B Would like some more knowledge about the product of functions

  • B
  • Thread starter Thread starter mcastillo356
  • Start date Start date
  • Tags Tags
    Precalculus
AI Thread Summary
The discussion focuses on understanding the product of functions, specifically the domains and ranges involved. The domain of the product is determined by the intersection of the individual domains, while the range is more complex and involves the intersection of the ranges of the functions. An example is provided to illustrate these concepts, highlighting the area bounded by a specific function and the x-axis. Participants clarify that the function remains non-negative over the interval [0, π], as the squared term is always positive and the cosine function does not become negative in this range. The conversation emphasizes the importance of correctly interpreting function behavior without relying solely on graphical representations.
mcastillo356
Gold Member
Messages
639
Reaction score
348
TL;DR Summary
Texbook don't seem to regard on the range and domains of function product. A search on the net gives clues, but I'd wish some more learning.
Hi, PF

I only have a clue on the topic I present; the answer involves the ##\subset##, maybe ##\subseteq## concepts; I mean that the only answer I've obtained is that both range and domain of the product of two functions are the inclusion of both. I include a picture regarding the example of the textbook, which shows to functions between ##0## and ##\pi##.

Greetings Function product.png
 
Mathematics news on Phys.org
The domain of the product must be the intersection of the domains of the two functions, for the obvious reason.

The precise range of a product is more complicated, again for the obvious reason.
 
  • Informative
Likes mcastillo356
mcastillo356 said:
domain of the product of two functions are the inclusion of both

What does that mean?
 
  • Informative
Likes mcastillo356
Hi, PF, my question lacks of context and precision.
EXAMPLE 6 Find the area of the region bounded by ##y=\Bigg(2+\sin{\displaystyle\frac{x}{2}}\Bigg)^2\cos{\displaystyle\frac{x}{2}}##, the ##x##-axis, and the lines ##x=0## and ##x=\pi##
Solution Because ##y\leq 0## when ##0\leq x\leq \pi##, the required area is
##A=\displaystyle\int_0^{\pi}{\Bigg(2+\sin{\displaystyle\frac{x}{2}}\Bigg)^2\cos{\displaystyle\frac{x}{2}}}\,dx##
Let ##v=2+\sin{\displaystyle\frac{x}{2}}##.
Then ##dv=\displaystyle\frac{1}{2}\cos{\displaystyle\frac{x}{2}}\,dx##
##=2\displaystyle\int_2^3{\,v^2\,dv}=\displaystyle\frac{2}{3}\,v^3\Bigg|_2^3=\displaystyle\frac{2}{3}(27-8)=\displaystyle\frac{38}{3}## square units
weirdoguy said:
What does that mean?
Ups... Intersection. "The range of sum/difference/product/quotient of two functions is the intersection of the ranges of the individual functions" (quote from Stack Exchange).
Hope to have mended my previous post inconsistency. Greetings.
 
mcastillo356 said:
EXAMPLE 6 Find the area of the region bounded by ##y=\Bigg(2+\sin{\displaystyle\frac{x}{2}}\Bigg)^2\cos{\displaystyle\frac{x}{2}}##, the ##x##-axis, and the lines ##x=0## and ##x=\pi##
Solution Because ##y\leq 0## when ##0\leq x\leq \pi##,
The inequality after "Because" isn't true. Perhaps you have the inequality reversed?
For the interval ##[0, \pi]##, ##\cos(x/2)## and ##\sin(x/2)## both have values in the interval [0, 1].
 
Mark44 said:
Perhaps you have the inequality reversed?
Yes.
##y\geq 0## when ##0\leq x\leq \pi##

Failure.png

Hi @Mark44, thanks a lot. Greetings!
 
Hi, PF

I can draw
##y(x) = \begin{cases} y\geq 0 & \text{if }0\leq x \leq {\displaystyle\frac{\pi}{2}}
\\ y\leq 0 & \text{if }\displaystyle\frac{\pi}{2} x \leq{\pi} \end{cases}##

Counterexample.png

This is easy, and doesn't add news to this thread

The question is: how should I manage to prove that ##y\geq 0## when ##0\leq x\leq{\pi}## for $$y=\Bigg(2+\sin{\displaystyle\frac{x}{2}}\Bigg)^2\cos{\displaystyle\frac{x}{2}}$$
avoiding the use of graphs?

The only mathematical evidence I have is that is true for the endpoints.

Greetings
 
mcastillo356 said:
Hi, PF

I can draw
##y(x) = \begin{cases} y\geq 0 & \text{if }0\leq x \leq {\displaystyle\frac{\pi}{2}}
\\ y\leq 0 & \text{if }\displaystyle\frac{\pi}{2} x \leq{\pi} \end{cases}##

View attachment 331364

This is easy, and doesn't add news to this thread

The question is: how should I manage to prove that ##y\geq 0## when ##0\leq x\leq{\pi}## for $$y=\Bigg(2+\sin{\displaystyle\frac{x}{2}}\Bigg)^2\cos{\displaystyle\frac{x}{2}}$$
avoiding the use of graphs?

The only mathematical evidence I have is that is true for the endpoints.

Greetings

You know that (2 + \sin (x/2))^2 > 0 for any x. So y can only be negative when \cos(x/2) < 0, which is not the case for x \in [0, \pi].
 
  • Like
Likes mcastillo356
Back
Top