Would like some more knowledge about the product of functions

  • Context: High School 
  • Thread starter Thread starter mcastillo356
  • Start date Start date
  • Tags Tags
    Precalculus
Click For Summary

Discussion Overview

The discussion revolves around the properties of the product of functions, particularly focusing on the domain and range of such products. Participants explore the mathematical implications of these properties through examples and seek clarification on specific concepts related to function behavior.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant suggests that the domain of the product of two functions is the intersection of their individual domains.
  • Another participant questions the meaning of the phrase "the inclusion of both" regarding the domain of the product.
  • A participant provides an example involving the area under a curve defined by a product of functions, discussing the implications of the function being non-positive over a specified interval.
  • There is a correction regarding the inequality of the function's value over the interval, with one participant asserting that the function is non-negative in that range.
  • Another participant expresses a desire to prove the non-negativity of the function without using graphical methods, relying on endpoint evaluations as evidence.
  • A later reply asserts that the term \((2 + \sin(x/2))^2\) is always positive, suggesting that the product's sign is determined by \(\cos(x/2)\), which is non-negative over the interval in question.

Areas of Agreement / Disagreement

Participants express differing views on the properties of the product of functions, particularly regarding the domain and range. While some points are clarified, the discussion remains unresolved on certain aspects, particularly the implications of the inequalities and the methods of proof.

Contextual Notes

Limitations include potential misunderstandings of mathematical terms and the need for precise definitions in discussing the properties of functions. The discussion also highlights the dependency on specific intervals and the behavior of trigonometric functions.

mcastillo356
Gold Member
Messages
660
Reaction score
364
TL;DR
Texbook don't seem to regard on the range and domains of function product. A search on the net gives clues, but I'd wish some more learning.
Hi, PF

I only have a clue on the topic I present; the answer involves the ##\subset##, maybe ##\subseteq## concepts; I mean that the only answer I've obtained is that both range and domain of the product of two functions are the inclusion of both. I include a picture regarding the example of the textbook, which shows to functions between ##0## and ##\pi##.

Greetings Function product.png
 
Mathematics news on Phys.org
The domain of the product must be the intersection of the domains of the two functions, for the obvious reason.

The precise range of a product is more complicated, again for the obvious reason.
 
  • Informative
Likes   Reactions: mcastillo356
mcastillo356 said:
domain of the product of two functions are the inclusion of both

What does that mean?
 
  • Informative
Likes   Reactions: mcastillo356
Hi, PF, my question lacks of context and precision.
EXAMPLE 6 Find the area of the region bounded by ##y=\Bigg(2+\sin{\displaystyle\frac{x}{2}}\Bigg)^2\cos{\displaystyle\frac{x}{2}}##, the ##x##-axis, and the lines ##x=0## and ##x=\pi##
Solution Because ##y\leq 0## when ##0\leq x\leq \pi##, the required area is
##A=\displaystyle\int_0^{\pi}{\Bigg(2+\sin{\displaystyle\frac{x}{2}}\Bigg)^2\cos{\displaystyle\frac{x}{2}}}\,dx##
Let ##v=2+\sin{\displaystyle\frac{x}{2}}##.
Then ##dv=\displaystyle\frac{1}{2}\cos{\displaystyle\frac{x}{2}}\,dx##
##=2\displaystyle\int_2^3{\,v^2\,dv}=\displaystyle\frac{2}{3}\,v^3\Bigg|_2^3=\displaystyle\frac{2}{3}(27-8)=\displaystyle\frac{38}{3}## square units
weirdoguy said:
What does that mean?
Ups... Intersection. "The range of sum/difference/product/quotient of two functions is the intersection of the ranges of the individual functions" (quote from Stack Exchange).
Hope to have mended my previous post inconsistency. Greetings.
 
mcastillo356 said:
EXAMPLE 6 Find the area of the region bounded by ##y=\Bigg(2+\sin{\displaystyle\frac{x}{2}}\Bigg)^2\cos{\displaystyle\frac{x}{2}}##, the ##x##-axis, and the lines ##x=0## and ##x=\pi##
Solution Because ##y\leq 0## when ##0\leq x\leq \pi##,
The inequality after "Because" isn't true. Perhaps you have the inequality reversed?
For the interval ##[0, \pi]##, ##\cos(x/2)## and ##\sin(x/2)## both have values in the interval [0, 1].
 
Mark44 said:
Perhaps you have the inequality reversed?
Yes.
##y\geq 0## when ##0\leq x\leq \pi##

Failure.png

Hi @Mark44, thanks a lot. Greetings!
 
Hi, PF

I can draw
##y(x) = \begin{cases} y\geq 0 & \text{if }0\leq x \leq {\displaystyle\frac{\pi}{2}}
\\ y\leq 0 & \text{if }\displaystyle\frac{\pi}{2} x \leq{\pi} \end{cases}##

Counterexample.png

This is easy, and doesn't add news to this thread

The question is: how should I manage to prove that ##y\geq 0## when ##0\leq x\leq{\pi}## for $$y=\Bigg(2+\sin{\displaystyle\frac{x}{2}}\Bigg)^2\cos{\displaystyle\frac{x}{2}}$$
avoiding the use of graphs?

The only mathematical evidence I have is that is true for the endpoints.

Greetings
 
mcastillo356 said:
Hi, PF

I can draw
##y(x) = \begin{cases} y\geq 0 & \text{if }0\leq x \leq {\displaystyle\frac{\pi}{2}}
\\ y\leq 0 & \text{if }\displaystyle\frac{\pi}{2} x \leq{\pi} \end{cases}##

View attachment 331364

This is easy, and doesn't add news to this thread

The question is: how should I manage to prove that ##y\geq 0## when ##0\leq x\leq{\pi}## for $$y=\Bigg(2+\sin{\displaystyle\frac{x}{2}}\Bigg)^2\cos{\displaystyle\frac{x}{2}}$$
avoiding the use of graphs?

The only mathematical evidence I have is that is true for the endpoints.

Greetings

You know that (2 + \sin (x/2))^2 > 0 for any x. So y can only be negative when \cos(x/2) < 0, which is not the case for x \in [0, \pi].
 
  • Like
Likes   Reactions: mcastillo356

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 80 ·
3
Replies
80
Views
10K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 51 ·
2
Replies
51
Views
5K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K