Write down the domain and range of the function

Click For Summary
The function g(x) = 1 / ((9 - x)²) has a domain of all real numbers except x = 9, which leads to division by zero. Therefore, the domain can be expressed as (-∞, 9) ∪ (9, ∞). The range of g(x) is all positive real numbers, as the function approaches zero but never reaches it. Thus, the range is (0, ∞). Understanding the definitions of domain and range is crucial for solving such problems.
fr33pl4gu3
Messages
82
Reaction score
0
Write down the domain and range of the function
g(x) = 1 / ((9 - x)2)

Please enter your answer as a list [in brackets], using inequalities e.g. a domain (for x) of (-¥, 2) and a range (for g(x)) of (2, 5] may be entered as:
[x < 2, 2 < g(x) and g(x) <= 5]

I don't get it??
 
Physics news on Phys.org


fr33pl4gu3 said:
Write down the domain and range of the function
g(x) = 1 / ((9 - x)2)

Please enter your answer as a list [in brackets], using inequalities e.g. a domain (for x) of (-¥, 2) and a range (for g(x)) of (2, 5] may be entered as:
[x < 2, 2 < g(x) and g(x) <= 5]

I don't get it??
What specifically don't you understand? The question or the notation?
 


The very first thing you should do is check the definitions of "domain" and "range". Look them up in the index of your textbook.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K