Writing expressions, Markov Models

Click For Summary
The discussion revolves around modeling a food bank's operations using a Markov model, focusing on food donations and demand. The expression for the amount of food available at the end of the week, Xn+1, was initially misrepresented but was corrected to Max(Min(Xn + Sn, 2) - dn, 0) to account for both lower and upper bounds. The transition probability matrix was also revised after realizing that supply should not exceed the storage limit of 200,000 lbs. The final matrix reflects the probabilities of food availability based on different scenarios of donations and demand. The participants express gratitude for the assistance in clarifying these points.
USN2ENG
Messages
107
Reaction score
0

Homework Statement



Through donations the food bank tries to feed as many people as possible. Assume there are no backorders - any unsatisfied demand is lost. The food bank also has limited facilities to store donations, 200,000lbs maximum can be held in storage. Assume donations are processed separately, and added to the supply at the beginning of each week.

The amount of food donated is represented by: ps(s) = .4 for s = 1, & = .6 for s = 2

The amount of food demand is represented by: pd(d) = .3 for d = 1, & = .7 for d = 2

Develop a model to analyze the current state of the Food Bank. Assume a Markov model is desired where the state of the system is defined to be the amount of food in the food bank at the end of the week. Let Xn = the amount of food available at the end of week n.

a. Write an expression for Xn+1
b. Find the transition probability matrix for the current situation

Homework Equations


The Attempt at a Solution



a. Write an expression for Xn+1

I am not sure how to write the expression and keep it bounded without using inequalities. Does that matter?

For the expression I have Xn+1 = Xn + Sn - dn

But, I need to bound this between 0 and 2 because it cannot go negative and it cannot store more than 200K-lbs. I think it is something like Max(Xn + Sn - dn, 0) but I don't know how to account for the upper bound.

b. Find the transition probability matrix for the current situation

I am pretty positive I have this one right. I worked out the sample space and probabilities for everything that could happen given we start with Xn = 0, 1 and 2 and came up with:


.82 .18 .00
.28 .54 .18
.00 .28 .72Thank you all for any help you can give!
 
Last edited:
Physics news on Phys.org
USN2ENG said:

Homework Statement



Through donations the food bank tries to feed as many people as possible. Assume there are no backorders - any unsatisfied demand is lost. The food bank also has limited facilities to store donations, 200,000lbs maximum can be held in storage. Assume donations are processed separately, and added to the supply at the beginning of each week.

The amount of food donated is represented by: ps(s) = .4 for s = 1, & = .6 for s = 2

The amount of food demand is represented by: pd(d) = .3 for d = 1, & = .7 for d = 2

Develop a model to analyze the current state of the Food Bank. Assume a Markov model is desired where the state of the system is defined to be the amount of food in the food bank at the end of the week. Let Xn = the amount of food available at the end of week n.

a. Write an expression for Xn+1
b. Find the transition probability matrix for the current situation



Homework Equations





The Attempt at a Solution



a. Write an expression for Xn+1

I am not sure how to write the expression and keep it bounded without using inequalities. Does that matter?

For the expression I have Xn+1 = Xn + Sn - dn

But, I need to bound this between 0 and 2 because it cannot go negative and it cannot store more than 200K-lbs. I think it is something like Max(Xn + Sn - dn, 0) but I don't know how to account for the upper bound.

b. Find the transition probability matrix for the current situation

I am pretty positive I have this one right. I worked out the sample space and probabilities for everything that could happen given we start with Xn = 0, 1 and 2 and came up with:


.82 .18 .00
.28 .54 .18
.00 .28 .72


Thank you all for any help you can give!

I don't see how you get the second row. If X0 = 1, we have X1 = 0 if S = 1 or 2 (so start the week with 2 in stock) and D = 2; and we have X1 = 1 if S = 1 or 2 and D = 1. (Presumably, extra supply is discarded if it would take stock over 2.)
 
Yeah, I just figured that out. My matrix was wrong because I was letting supply go greater than 2.

My expression should have been: Max( Min(Xn + Sn, 2) - dn, 0)

and my matrix should have been:

.82 .18 .00
.70 .30 .00
.70 .30 .00

This should be right, now.

Thanks again Mr. Vickson for the help.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 35 ·
2
Replies
35
Views
10K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 23 ·
Replies
23
Views
6K
  • · Replies 14 ·
Replies
14
Views
4K