I Yang-Mills Stress-Energy Tensor Explained

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
It's given as ##T_{\mu \nu} = - \mathrm{tr}(F_{\mu \lambda} {F_{\nu}}^{\lambda} - \frac{1}{4} g_{\mu \nu} F_{\alpha \beta} F^{\alpha \beta})##. Can somebody explain the notation, i.e. what is the meaning here of the trace? (usually I would interpret the trace of a matrix as the number ##\mathrm{tr}(a_{\mu \nu}) = {a^{\mu}}_{\mu}##.)
 
Physics news on Phys.org
The trace is over the group indices that are not explicitly written out.
 
  • Informative
Likes ergospherical
It would have made more sense to just show "a" as a SU(n) adjoint rep. index on those F's, rather than use Tr which becomes problematic when you consider QCD, that is adding gammas and spinors and their trace(s).
 
  • Like
Likes vanhees71 and ergospherical
ergospherical said:
It's given as ##T_{\mu \nu} = - \mathrm{tr}(F_{\mu \lambda} {F_{\nu}}^{\lambda} - \frac{1}{4} g_{\mu \nu} F_{\alpha \beta} F^{\alpha \beta})##. Can somebody explain the notation, i.e. what is the meaning here of the trace?

For such questions of notation, it would be helpful to give the reference.
 
  • Like
Likes vanhees71 and ergospherical
ergospherical said:
It's given as ##T_{\mu \nu} = - \mathrm{tr}(F_{\mu \lambda} {F_{\nu}}^{\lambda} - \frac{1}{4} g_{\mu \nu} F_{\alpha \beta} F^{\alpha \beta})##. Can somebody explain the notation, i.e. what is the meaning here of the trace?
Here F_{\mu\nu} is the matrix-valued field tensor: F_{\mu\nu} = \mathcal{F}_{\mu\nu}^{a}X_{a} , where the X’s are a set (in fact, any set) of matrices satisfying the Lie algebra of the group [X_{a},X_{b}] = i C_{ab}{}^{c}X_{c}.
So \mbox{Tr}\left( F_{\mu\nu}F^{\mu\nu}\right) = \mathcal{F}_{\mu\nu}^{a}\mathcal{F}^{\mu\nu b} \ \mbox{Tr} \left( X_{a}X_{b}\right), and \mbox{Tr}\left(X_{a}X_{b}\right) \equiv \left(X_{a} X_{b}\right)_{ii}, \ \ i = 1,2, \cdots , p where p is the dimension of the representation. For simple compact Lie groups, we can always choose the X’s to be trace-orthonormal \mbox{Tr}\left( X_{a}X_{b}\right) = 2C \delta_{ab} , where C is a constant for each irreducible part of the representation. The matrix notation is useful because it makes gauge-invariance (kind of) obvious: \mbox{Tr}\left(gF_{\mu\nu}g^{-1}gF^{\mu\nu}g^{-1}\right) = \mbox{Tr}\left( F_{\mu\nu}F^{\mu\nu}\right).
 
  • Like
  • Informative
Likes ergospherical, vanhees71 and dextercioby
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top