MHB Z6: Identity, Order, Inverse, Generator, Abelian/Non-Abelian, Subgroups

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textit{ For the following groups,}$$(a)\quad \Bbb{Z}_6 \text{ the identity is } \color{red}{0}$
$(b)\quad |\Bbb{Z}_6|=\color{red}{6}$
$(c)\quad |0|=\color{red}{0}$
$(d)\quad |3| =\color{red}{|0,3|}$
$(e)\quad \text{the inverse of 2 is } \color{red}{4}$
$(f)\quad \text{the generator of this group is cyclic groups generated by } \color{red}{ 1}$
$(g)\quad \textit{Abelian/non-Abelian?} \quad \color{red}{Abelian}$
$(h)\quad Z_6 \text{ has $\color{red}{4 }$ subgroups.}$Sorta?
 
Last edited:
Physics news on Phys.org
A couple of mistakes.

$\color{black}(c)\quad |0|=\color{red}1$
$\color{black}(d)\quad \color{red}\langle\color{black}3\color{red}\rangle\color{black}=\color{red}\{0,3\}$
 
I tried to check these with W|A but didn't know the input format?

like the next one U(14)
 
karush said:
I tried to check these with W|A but didn't know the input format?

like the next one U(14)

W|A seems to understand:
  • 'finite group Z_6'. Note that If we type just 'Z_6' it shows an option to select 'finite group'.
  • 'finite group of order 6'. Note that U(14) has order 6. Moreover, it is isomorphic with $\mathbb Z_6$. Isomorphic means that all properties are the same except that the elements have different 'names'.
  • 'additive group of integers modulo 6'
  • 'multiplicative group of integers modulo 14'
Btw, U(14) is more commonly written as $\mathbb Z_{14}^\times$ or $\mathbb Z_{14}^\ast$. W|A does not seem to understand that either though.
 
https://dl.orangedox.com/GXEVNm73NxaGC9F7Cy
SSCwt.png
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
2
Views
6K
Replies
0
Views
389
Replies
3
Views
426
Replies
14
Views
3K
Replies
6
Views
2K
Replies
4
Views
2K
Replies
42
Views
10K
Back
Top