MHB Z6: Identity, Order, Inverse, Generator, Abelian/Non-Abelian, Subgroups

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textit{ For the following groups,}$$(a)\quad \Bbb{Z}_6 \text{ the identity is } \color{red}{0}$
$(b)\quad |\Bbb{Z}_6|=\color{red}{6}$
$(c)\quad |0|=\color{red}{0}$
$(d)\quad |3| =\color{red}{|0,3|}$
$(e)\quad \text{the inverse of 2 is } \color{red}{4}$
$(f)\quad \text{the generator of this group is cyclic groups generated by } \color{red}{ 1}$
$(g)\quad \textit{Abelian/non-Abelian?} \quad \color{red}{Abelian}$
$(h)\quad Z_6 \text{ has $\color{red}{4 }$ subgroups.}$Sorta?
 
Last edited:
Physics news on Phys.org
A couple of mistakes.

$\color{black}(c)\quad |0|=\color{red}1$
$\color{black}(d)\quad \color{red}\langle\color{black}3\color{red}\rangle\color{black}=\color{red}\{0,3\}$
 
I tried to check these with W|A but didn't know the input format?

like the next one U(14)
 
karush said:
I tried to check these with W|A but didn't know the input format?

like the next one U(14)

W|A seems to understand:
  • 'finite group Z_6'. Note that If we type just 'Z_6' it shows an option to select 'finite group'.
  • 'finite group of order 6'. Note that U(14) has order 6. Moreover, it is isomorphic with $\mathbb Z_6$. Isomorphic means that all properties are the same except that the elements have different 'names'.
  • 'additive group of integers modulo 6'
  • 'multiplicative group of integers modulo 14'
Btw, U(14) is more commonly written as $\mathbb Z_{14}^\times$ or $\mathbb Z_{14}^\ast$. W|A does not seem to understand that either though.
 
https://dl.orangedox.com/GXEVNm73NxaGC9F7Cy
SSCwt.png
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Replies
2
Views
6K
Replies
0
Views
443
Replies
3
Views
482
Replies
14
Views
3K
Replies
6
Views
2K
Replies
4
Views
2K
Replies
42
Views
10K
Back
Top