MHB Zero divisor for polynomial rings

Click For Summary
The discussion centers on proving that a polynomial p(x) in a commutative ring R is a zero divisor in the polynomial ring R[x] if and only if there exists a nonzero element b in R such that bp(x) = 0. The approach involves considering a nonzero polynomial g(x) of minimal degree such that g(x)p(x) = 0, leading to the conclusion that the leading coefficient of p(x) multiplied by g(x) must also equal zero. This implies that the coefficients of p(x) must vanish when multiplied by g(x), establishing the necessary conditions for p(x) being a zero divisor. The argument is supported by induction on the polynomial's coefficients, reinforcing the relationship between zero divisors and the existence of nonzero elements in R. The discussion effectively highlights the interplay between polynomial degrees and zero divisors in algebraic structures.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everybody,I am having trouble with how to begin with this problem from Abstract Algebra by Dummit and Foote (2nd ed):
Let $R$ be a commutative ring with 1.

Let $p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be an element of the polynomial ring $R[x]$. Prove that $p(x)$ is a zero divisor in $R[x]$ if and only if there is a nonzero $b\in R$ such that $bp(x)=0$.

Hint: Let $g(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_0$ be a nonzero polynomial of minimal degree of such that $g(x)p(x)=0$. Show that $b_ma_n=0$ and so $a_ng(x)$ is a polynomial of degree than $m$ that gives 0 when multiplied by $p(x)$. Conclude that $a_ng(x)=0$. Apply a similar argument to show by induction on $i$ that $a_{n-i}g(x)=0$ for $i=0,1,\cdots,n$ and show that implies $b_mp(x)=0$.

Thanks
CBarker1
 
Physics news on Phys.org
Cbarker1 said:
Dear Everybody,I am having trouble with how to begin with this problem from Abstract Algebra by Dummit and Foote (2nd ed):
Let $R$ be a commutative ring with 1.

Let $p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be an element of the polynomial ring $R[x]$. Prove that $p(x)$ is a zero divisor in $R[x]$ if and only if there is a nonzero $b\in R$ such that $bp(x)=0$.

Hint: Let $g(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_0$ be a nonzero polynomial of minimal degree of such that $g(x)p(x)=0$. Show that $b_ma_n=0$ and so $a_ng(x)$ is a polynomial of degree less than $m$ that gives 0 when multiplied by $p(x)$. Conclude that $a_ng(x)=0$. Apply a similar argument to show by induction on $i$ that $a_{n-i}g(x)=0$ for $i=0,1,\cdots,n$ and show that implies $b_mp(x)=0$.

Thanks
CBarker1

My attempt at least the implication, but not the converse:

Suppose $p(x)$ is a zero divisor. Let $g(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_0$ be a nonzero polynomial of minimal degree of such that $g(x)p(x)=0$. Then $g(x)p(x)=(b_mx^m+\cdots+b_0)(a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0)=b_ma_nx^(m+n)+\cdots+b_0a_0=0$ by the assumption. so $a_ng(x)$ is a polynomial of degree less than $m$ that gives 0 when multiplied by $p(x)$. Thus, $a_ng(x)=0$ because $R$ is commutative then the polynomial ring is, too.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 24 ·
Replies
24
Views
817
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 55 ·
2
Replies
55
Views
7K
Replies
48
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 26 ·
Replies
26
Views
811
  • · Replies 5 ·
Replies
5
Views
1K
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K