MHB Zero divisor for polynomial rings

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everybody,I am having trouble with how to begin with this problem from Abstract Algebra by Dummit and Foote (2nd ed):
Let $R$ be a commutative ring with 1.

Let $p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be an element of the polynomial ring $R[x]$. Prove that $p(x)$ is a zero divisor in $R[x]$ if and only if there is a nonzero $b\in R$ such that $bp(x)=0$.

Hint: Let $g(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_0$ be a nonzero polynomial of minimal degree of such that $g(x)p(x)=0$. Show that $b_ma_n=0$ and so $a_ng(x)$ is a polynomial of degree than $m$ that gives 0 when multiplied by $p(x)$. Conclude that $a_ng(x)=0$. Apply a similar argument to show by induction on $i$ that $a_{n-i}g(x)=0$ for $i=0,1,\cdots,n$ and show that implies $b_mp(x)=0$.

Thanks
CBarker1
 
Physics news on Phys.org
Cbarker1 said:
Dear Everybody,I am having trouble with how to begin with this problem from Abstract Algebra by Dummit and Foote (2nd ed):
Let $R$ be a commutative ring with 1.

Let $p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be an element of the polynomial ring $R[x]$. Prove that $p(x)$ is a zero divisor in $R[x]$ if and only if there is a nonzero $b\in R$ such that $bp(x)=0$.

Hint: Let $g(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_0$ be a nonzero polynomial of minimal degree of such that $g(x)p(x)=0$. Show that $b_ma_n=0$ and so $a_ng(x)$ is a polynomial of degree less than $m$ that gives 0 when multiplied by $p(x)$. Conclude that $a_ng(x)=0$. Apply a similar argument to show by induction on $i$ that $a_{n-i}g(x)=0$ for $i=0,1,\cdots,n$ and show that implies $b_mp(x)=0$.

Thanks
CBarker1

My attempt at least the implication, but not the converse:

Suppose $p(x)$ is a zero divisor. Let $g(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_0$ be a nonzero polynomial of minimal degree of such that $g(x)p(x)=0$. Then $g(x)p(x)=(b_mx^m+\cdots+b_0)(a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0)=b_ma_nx^(m+n)+\cdots+b_0a_0=0$ by the assumption. so $a_ng(x)$ is a polynomial of degree less than $m$ that gives 0 when multiplied by $p(x)$. Thus, $a_ng(x)=0$ because $R$ is commutative then the polynomial ring is, too.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top