MHB Zero divisor for polynomial rings

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everybody,I am having trouble with how to begin with this problem from Abstract Algebra by Dummit and Foote (2nd ed):
Let $R$ be a commutative ring with 1.

Let $p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be an element of the polynomial ring $R[x]$. Prove that $p(x)$ is a zero divisor in $R[x]$ if and only if there is a nonzero $b\in R$ such that $bp(x)=0$.

Hint: Let $g(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_0$ be a nonzero polynomial of minimal degree of such that $g(x)p(x)=0$. Show that $b_ma_n=0$ and so $a_ng(x)$ is a polynomial of degree than $m$ that gives 0 when multiplied by $p(x)$. Conclude that $a_ng(x)=0$. Apply a similar argument to show by induction on $i$ that $a_{n-i}g(x)=0$ for $i=0,1,\cdots,n$ and show that implies $b_mp(x)=0$.

Thanks
CBarker1
 
Physics news on Phys.org
Cbarker1 said:
Dear Everybody,I am having trouble with how to begin with this problem from Abstract Algebra by Dummit and Foote (2nd ed):
Let $R$ be a commutative ring with 1.

Let $p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be an element of the polynomial ring $R[x]$. Prove that $p(x)$ is a zero divisor in $R[x]$ if and only if there is a nonzero $b\in R$ such that $bp(x)=0$.

Hint: Let $g(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_0$ be a nonzero polynomial of minimal degree of such that $g(x)p(x)=0$. Show that $b_ma_n=0$ and so $a_ng(x)$ is a polynomial of degree less than $m$ that gives 0 when multiplied by $p(x)$. Conclude that $a_ng(x)=0$. Apply a similar argument to show by induction on $i$ that $a_{n-i}g(x)=0$ for $i=0,1,\cdots,n$ and show that implies $b_mp(x)=0$.

Thanks
CBarker1

My attempt at least the implication, but not the converse:

Suppose $p(x)$ is a zero divisor. Let $g(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_0$ be a nonzero polynomial of minimal degree of such that $g(x)p(x)=0$. Then $g(x)p(x)=(b_mx^m+\cdots+b_0)(a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0)=b_ma_nx^(m+n)+\cdots+b_0a_0=0$ by the assumption. so $a_ng(x)$ is a polynomial of degree less than $m$ that gives 0 when multiplied by $p(x)$. Thus, $a_ng(x)=0$ because $R$ is commutative then the polynomial ring is, too.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 24 ·
Replies
24
Views
685
Replies
6
Views
1K
  • · Replies 55 ·
2
Replies
55
Views
6K
Replies
48
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 26 ·
Replies
26
Views
680
Replies
5
Views
936
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K