MHB Zero's question at Yahoo Answers regarding polynomial fitting

AI Thread Summary
The discussion focuses on constructing a fourth-degree polynomial with specified x-intercepts at -12, -6, and 6, and a y-intercept of -432. The polynomial must have a double root at x=6 due to its quartic nature, leading to the form f(x) = -k(x+12)(x+6)(x-6)², where k is a positive constant. By substituting the y-intercept condition, k is determined to be 1/6. The fully expanded polynomial is f(x) = -1/6x⁴ - x³ + 18x² + 36x - 432. This solution effectively meets the problem's requirements.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Write a function for the polynomial that fits the following description.?

write a function for the polynomial that fits the following description.

p is a fourth-degree polynomial with x-intercepts -12, -6, and 6 and y-intercept -432;
p(x) is positive only on the interval (-12 , -6 ).

Here is a link to the question:

Write a function for the polynomial that fits the following description.? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Zero,

From the given information, we know the polynomial must have a graph resembling the following:

View attachment 629

Since the function does not pass through the $x$-axis at $x=6$, and it is a quartic, meaning it can have at most 4 roots, we know this root is of multiplicity 2.

Now, in order to have a negative $y$-intercept, we know it must have the form:

$f(x)=-k(x+12)(x+6)(x-6)^2$ where $0<k$

To determine $k$, we may use the information regarding its $y$ intercept as follows:

$f(0)=-k(0+12)(0+6)(0-6)^2=-432$

$-12\cdot6^3k=-432=-2\cdot6^3$

$\displaystyle k=\frac{1}{6}$

Hence:

$\displaystyle f(x)=-\frac{1}{6}(x+12)(x+6)(x-6)^2$

Since we are asked for a polynomial, we should expand it fully to find:

$\displaystyle f(x)=-\frac{1}{6}(x+12)(x-6)(x+6)(x-6)=$

$\displaystyle -\frac{1}{6}(x^2+6x-72)(x^2-36)=$

$\displaystyle -\frac{1}{6}(x^4-36x^2+6x^3-216x-72x^2+2592)=$

$\displaystyle -\frac{1}{6}(x^4+6x^3-108x^2-216x+2592)=$

$\displaystyle -\frac{1}{6}x^4-x^3+18x^2+36x-432$
 

Attachments

  • zero.jpg
    zero.jpg
    5.8 KB · Views: 98
Last edited:
MarkFL said:
Hello Zero,

From the given information, we know the polynomial must have a graph resembling the following:

View attachment 629

Since the function does not pass through the $x$-axis at $x=6$, and it is a quartic, meaning it can have at most 4 roots, we know this root is of multiplicity 2.

Now, in order to have a negative $y$-intercept, we know it must have the form:

$f(x)=-k(x+12)(x+6)(x-6)^2$ where $0<k$

To determine $k$, we may use the information regarding its $y$ intercept as follows:

$f(0)=-k(0+12)(0+6)(0-6)^2=-432$

$-12\cdot6^3k=-432=-2\cdot6^3$

$\displaystyle k=\frac{1}{6}$

Hence:

$\displaystyle f(x)=-\frac{1}{6}(x+12)(x+6)(x-6)^2$

Since we are asked for a polynomial, we should expand it fully to find:

$\displaystyle f(x)=-\frac{1}{6}(x+12)(x-6)(x+6)(x-6)=$

$\displaystyle -\frac{1}{6}(x^2+6x-72)(x^2-36)=$

$\displaystyle -\frac{1}{6}(x^4-36x^2+6x^3-216x-72x^2+2592)=$

$\displaystyle -\frac{1}{6}(x^4+6x^3-108x^2-216x+2592)=$

$\displaystyle -\frac{1}{6}x^4-x^3+18x^2+36x-432$

I really dig your ability to present solutions in a clear and concise manner
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top