Force constant of a spring launching a satellite

Click For Summary
To design a spring for launching a 1200 kg satellite at 3.80 m/s with a maximum acceleration of 5g, the spring constant (k) must be calculated using the relationship between force, mass, and acceleration. The initial energy equation is simplified by ignoring gravitational potential energy, leading to the equation 0.5mv^2 = 0.5kx^2. By incorporating the maximum acceleration into the calculations, the spring force can be expressed as F = kx, and the relationship between k and x can be established. Ultimately, the spring constant is derived as k = (25mg^2)/v^2, allowing for the determination of both k and the compression distance x. This approach effectively resolves the problem using two equations with two unknowns.
ph123
Messages
41
Reaction score
0
You are asked to design a spring that will give a 1200 kg satellite a speed of 3.80 m/s relative to an orbiting space shuttle. Your spring is to give the satellite a maximum acceleration of 5.00g. The spring's mass, the recoil kinetic energy of the shuttle, and changes in gravitational potential energy will all be negligible.

a) What must the force constant of the spring be?

b) What distance must the spring be compressed?

I don't really know how to approach this problem, since without the spring constant (k), you cannot find the distance the spring is compressed (x) and vice versa.

But, according to the problem,

0.5kx^2 + mgh = 0.5mv^2 +5mgh
0.5kx^2 = 0.5mv^2 + 4mgh
kx^2 = mv^2 + 8mgh
k = (mv^2 + 8mgh)/x^2

I know this has to be wrong because there are three unknowns, h, x, and k. Can someone help me approach this differently?
 
Physics news on Phys.org
You were told to ignore the gravitational potential energy, so drop the mgh terms. Then your energy equation is correct, but you still have two unknowns. Now use the condition that the maximum acceleration the spring is supposed to impart is 5g. (F=ma etc).
 
0.5mv^2 = 0.5kx^2

I am not seeing how to incorporate acceleration into this equation. To find the work done by the force of the spring,

F= ma = 5mg * x = 5mgx ??
 
For a spring, F=k*x, right? You don't incorporate it into that equation, you derive another equation. 2 equations+2 unknowns=happiness.
 
ahhhh.

so

F=kx
5mg=kx
x=(5mg)/k

0.5mv^2 = 0.5kx^2
mv^2 = kx^2
mv^2 = k([5mg]/k)^2
mv^2 = k(25m^2g^2)/(k^2)
k = (25mg^2)/v^2

right? i think so, yay
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

Replies
29
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 14 ·
Replies
14
Views
4K
Replies
5
Views
2K
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 58 ·
2
Replies
58
Views
3K