Force constant of a spring launching a satellite

AI Thread Summary
To design a spring for launching a 1200 kg satellite at 3.80 m/s with a maximum acceleration of 5g, the spring constant (k) must be calculated using the relationship between force, mass, and acceleration. The initial energy equation is simplified by ignoring gravitational potential energy, leading to the equation 0.5mv^2 = 0.5kx^2. By incorporating the maximum acceleration into the calculations, the spring force can be expressed as F = kx, and the relationship between k and x can be established. Ultimately, the spring constant is derived as k = (25mg^2)/v^2, allowing for the determination of both k and the compression distance x. This approach effectively resolves the problem using two equations with two unknowns.
ph123
Messages
41
Reaction score
0
You are asked to design a spring that will give a 1200 kg satellite a speed of 3.80 m/s relative to an orbiting space shuttle. Your spring is to give the satellite a maximum acceleration of 5.00g. The spring's mass, the recoil kinetic energy of the shuttle, and changes in gravitational potential energy will all be negligible.

a) What must the force constant of the spring be?

b) What distance must the spring be compressed?

I don't really know how to approach this problem, since without the spring constant (k), you cannot find the distance the spring is compressed (x) and vice versa.

But, according to the problem,

0.5kx^2 + mgh = 0.5mv^2 +5mgh
0.5kx^2 = 0.5mv^2 + 4mgh
kx^2 = mv^2 + 8mgh
k = (mv^2 + 8mgh)/x^2

I know this has to be wrong because there are three unknowns, h, x, and k. Can someone help me approach this differently?
 
Physics news on Phys.org
You were told to ignore the gravitational potential energy, so drop the mgh terms. Then your energy equation is correct, but you still have two unknowns. Now use the condition that the maximum acceleration the spring is supposed to impart is 5g. (F=ma etc).
 
0.5mv^2 = 0.5kx^2

I am not seeing how to incorporate acceleration into this equation. To find the work done by the force of the spring,

F= ma = 5mg * x = 5mgx ??
 
For a spring, F=k*x, right? You don't incorporate it into that equation, you derive another equation. 2 equations+2 unknowns=happiness.
 
ahhhh.

so

F=kx
5mg=kx
x=(5mg)/k

0.5mv^2 = 0.5kx^2
mv^2 = kx^2
mv^2 = k([5mg]/k)^2
mv^2 = k(25m^2g^2)/(k^2)
k = (25mg^2)/v^2

right? i think so, yay
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top