When is Matrix C Not Invertible?

  • Thread starter Thread starter dcl
  • Start date Start date
dcl
Messages
54
Reaction score
0
<br /> c = \left[ {\begin{array}{*{20}c}<br /> {2 - x} &amp; 5 &amp; 1 \\<br /> { - 3} &amp; 0 &amp; x \\<br /> { - 2} &amp; 1 &amp; 2 \\<br /> \end{array}} \right]

a) Calculate det(C).
My answer was x^2 - 12x + 27.

b) Calculate det(2C).
Umm, would this just be 2*det(C)?
Couldn't find anything more helpful in my notes.

c) State the values for 'x' for which C is not invertible.
I believe the value for 'x' that would make this non invertable would be the solution that det(c) = 0. (A matrix has no inverse when the determinant = 0 yeh?)
which would be x = 9 or 3
is this correct?
 
Physics news on Phys.org
I get the same answer as you on (a) and (c). I'm thinking that det(aC)=a^N det(c) where a is a constant and N is the "dimension" (wrong terminology? NxN matrix). If I am right about that, then for a 3x3 matrix, det(2C) = 8 det(C).

You may be thinking about the trace of a matrix: Tr(2C) = 2 Tr(C).
 
Last edited:
Hmm, yeh, what you're saying would make more sense.
Thanks for confirming the other answers.
 
Janitor is correct about (b). To see it, just consider what happens if C is the identity: 2I has 2 along the diagonal and 0 everywhere else, so the determinant is det(2I) = 8 = 23det(I).
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top