Let X be an infinite set. Consider the set l^p(X), where 1\leq p < +\infty, of all complex functions that satisfy the inequality
\sup \{\sum_{x\in E} |f(x)|^p: E \subset X, \;\; |E|<\aleph_0 \} < +\infty .
The function \| \|_p: l^p(X)\rightarrow \mathbb{[0,+\infty]} defined by
\| f \|_p = \sup...