for ##\frac{\partial \psi _2}{\partial N_1}## I'm taking ##\frac{\partial N _2}{\partial N_1}## and ##\frac{\partial ln(rN_2)}{\partial N_1}## as zero based on the assumption that it is similar to taking the derivative of a constant, would this be correct?
You may find this helpful: http://chemwiki.ucdavis.edu/Physical_Chemistry/Quantum_Mechanics/Atomic_Theory/Intermolecular_Forces/Polarizability
It's essentially the ease in which the electron cloud of a neutral molecule can be distorted in order to produce a dipole moment.
Hey Chet,
Thanks for the help, I've got the third term now. Am I even close with the other 2 terms? I've been playing around with them a bit more, but I can't quite seem to get it, especially the first term with the ln(1-ϕ2)
Homework Statement
(Note: This isn't an assignment problem, more a curiosity about the derivation of an equation - hopefully it is still posted in the right forum..)
I have working through the derivation for the partial molar Gibbs free energy of mixing from the Flory-Huggins expression for...
okay, fixed.
$$ \frac{1}{6}t - \frac{1}{6\sqrt{6}}sin(\sqrt{6}t) - \frac{1}{6}(t-1)u(t-1) + \frac{1}{6\sqrt{6}}sin(\sqrt{6}(t-1))u(t-1) - \frac{1}{6}u(t-1) + \frac{1}{6}cos(\sqrt{6}t)u(t-1) - \frac{2}{\sqrt{6}}sin(\sqrt{6}t) $$
I'm sorry but I'm not sure what you mean by the argument...
So, with the algebra corrected I have
Y(s)=1/(s2(s2+6)) -e-s/(s2(s2+6)) - e-s/(s(s2+6)) - 2/(s2+6)
the inverse of the first term
L-1{1/(s2(s2+6))} I can't find anything like this in my table, most of the entries have s2+k2 which I can't break 6 down into?
Homework Statement
y''+6y=f(t), y(0)=0, y'(0)=-2
f(t)= t for 0≤t<1 and 0 for t≥1
Homework Equations
The Attempt at a Solution
L{y''}+6L{y}=L{t}-L{tμ(t-1)} where μ(t-1) is Unit Step
Y(s)=L{y}
sY(s)-y(0)=L{y'} and y(0)=0
s2Y(s)-sy(0)-y'(0)+6Y(s) where y(0)=0 and...