Number of states in that volume of k-space, ##n(k)dk## is: $$n(k)dk = (\frac{L^3}{4 \pi^3}) \cdot 4 \pi k^2 dk = \frac{L^3}{\pi^2}dk$$.
Then the notes state that by defintion, ##n(k)dk = n(E)dE##, and hence $$n(E)d(E) = \frac{L^3}{\pi^2}dk$$.
I don't quite see why this is true - isn't it the...