Let's (mostly me) try this again. I have the following:
\Psi_n(x)=\sqrt2\sin(n\pi x)\ x\in[0,1]
|\Psi_n(x)|^2=2\sin^2(n\pi x)\ x\in[0,1]
\Phi_n(p)=\frac{1}{\sqrt{2\pi\hbar}}\int^\infty_{-\infty}e^{-ipx/\hbar}\Psi(x)dx\ x\in[0,1],p\in\Re3.54
\Phi_n(p)=\frac{\pi...