Markov Chain Homework: Expressing Transition Matrix P in Terms of G

hsong9
Messages
71
Reaction score
1
Please Help! Markov Chain

Homework Statement


Let X0 be a random variable with values in a countable set I. Let Y1, Y2, ... be a
sequence of independent random variables, uniformly distributed on [0, 1].
Suppose we are given a function G : I x [0, 1] -> I
and define inductively for n >= 0, Xn+1 = G(Xn, Yn+1).
Show that (Xn)n>=0 is a Markov chain and
express its transition matrix P in terms of G.



Homework Equations





The Attempt at a Solution


I know that I need to show that Xn+1 depends on Xn by checking the condition in the definition of Markov chain, and then
try to find some formula for P(Xn+1 = j | Xn=i) in terms of G.

Actually, my background for Markov chain lacks a little, so I have no how I find some formula for P in terms of G.. How do I handle terms of G?
Anybody give me some hints or answer?
 
Physics news on Phys.org


I guess you should only need to show P[Xn+1 = xn+1 | X1 = x1, X2 = x2, ..., Xn = xn] = P[Xn+1 = xn+1 | Xn = xn]. (Markov property).

In your case it holds, since G is only a function of Xn; and Yi are independent random variables. P[Xn+1 = xn+1 | Xn = xn] = P[G(xn, y)=xn+1] where y is the uniformly distributed random variable.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top