D^2T/dx^2 + d^2T/dy^2 + d^2T/dz^2 = C

  • Thread starter Thread starter timsea81
  • Start date Start date
timsea81
Messages
89
Reaction score
1
I'm trying to solve the heat conduction formula in 3 dimensions when there is constant generation from electrical resistance q'''. This creates a constant C on the right hand side that is equal to q'''/k.

T=T(x,y,z)
d^2T/dx^2 + d^2T/dy^2 + d^2T/dz^2 = C

I found a solution using separation of variables for when the right hand side equals 0, but it doesn't work with a non-zero constant on the right, because you end up with:

X'''/x + Y'''/y + Z'''/z = C/XYZ
 
Physics news on Phys.org
I think I got it, maybe. I can solve the homogeneous equation:

d^2τ/dx^2 + d^2τ/dy^2 + d^2τ/dz^2 = 0

and then assume the particular solution to have the form:

T = τ + Ax^2 + Bx^2 + Dx^2

That makes

d^2T/dx^2 + d^2T/dy^2 + d^2T/dz^2 = 0 + 2A + 2B + 2D,

So 2A + 2B + 2D = -C

and I can use boundary conditions to find A, B, and D

?
 
You need to start with a particular solution (Cx^2/2 will suffice, but if you expect your solution to have certain symmetry properties then it might be worth looking for a particular solution which shares those properties) and then add complementary functions to satisfy the boundary conditions.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top