What Is the Coefficient of Rolling Friction for a Low-Pressure Bicycle Tire?

  • Thread starter Thread starter toxsic
  • Start date Start date
  • Tags Tags
    Rolling Tires
AI Thread Summary
The discussion centers on calculating the coefficient of rolling friction for a low-pressure bicycle tire inflated to 40 psi, which travels 18.6 m before its speed is halved, compared to a high-pressure tire at 105 psi that travels 93.5 m. The key relationship involves equating the initial kinetic energy of each tire to the work done against rolling friction, expressed as the frictional force multiplied by distance. By denoting the coefficients of friction for each tire and using the distances traveled, the coefficients can be related to each other. The solution approach emphasizes that mass and normal force can be simplified out of the equations, allowing for a direct comparison of the coefficients based on distance traveled. This method provides a pathway to determine the coefficient of rolling friction for the low-pressure tire.
toxsic
Messages
3
Reaction score
0

Homework Statement



Two bicycle tires are set rolling with the same initial speed of 3.30 m/s along a long, straight road, and the distance each travels before its speed is reduced by half is measured. One tire is inflated to a pressure of 40 psi and goes 18.6 m; the other is at 105 psi and goes 93.5 m. Assume that the net horizontal force is due to rolling friction only.
What is the coefficient of rolling friction mu_r for the tire under low pressure?

Homework Equations





The Attempt at a Solution



Honestly, I have no idea where to begin. The professor has never explained anything like it and this is a first. It's on mastering physics and it's well above my head
 
Physics news on Phys.org
Do you have a mass for each of the tires?
 
toxsic said:

Homework Statement



Two bicycle tires are set rolling with the same initial speed of 3.30 m/s along a long, straight road, and the distance each travels before its speed is reduced by half is measured. One tire is inflated to a pressure of 40 psi and goes 18.6 m; the other is at 105 psi and goes 93.5 m. Assume that the net horizontal force is due to rolling friction only.
What is the coefficient of rolling friction mu_r for the tire under low pressure?

Homework Equations





The Attempt at a Solution



Honestly, I have no idea where to begin. The professor has never explained anything like it and this is a first. It's on mastering physics and it's well above my head

In my previous post, I asked if you had the mass of the tires (plus wheel, of course) but you can get pretty far without that information. Here's the basic idea: The initial kinetic energy of each tire is going to go into work to overcome friction. That work is equal to the frictional force times the distance. So let's set this up:

Let the coefficient of kinetic friction for the tire inflated to 40 psi be denoted by \mu_1.

And let the coefficient of kinetic friction for the other tire be denoted by \mu_2

Then the basic relationship is

K.E. = F_f d

The frictional force for the first tire is, of course, given by F_f = \mu_1 N
with a similar equation for the other tire.

That implies that, if we label the distance the tire travels by d_1

K.E. = \mu_1 N d_1

for the first tire and a similar relationship for the second tire. We'll assume the two tires have the same mass and we know that they start with the same kinetic energy, so you can either set the two expressions equal to each other (or divide one of the equations by the other). At any rate the K.E and the normal forces cancel out leaving you with the two coefficients of friction and the two distances. You can then express one coefficient of friction in terms of the other.

Got that?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top