Doubt regarding Force exerted by a magnetic field on a moving charge

AI Thread Summary
A charged particle moving in a magnetic field experiences a force defined by the equation F = q(VxB), which indicates that when the particle's velocity (V) is zero relative to the magnetic field (B), the force (F) is also zero. The velocity is indeed relative to the magnetic field, as the force depends on both the magnitude and direction of the velocity in relation to the magnetic field lines. When a charged particle moves parallel to the magnetic field lines, it experiences no force, while the force is maximized when moving perpendicular to them. Additionally, relativistic effects can alter the electromagnetic interactions depending on the observer's frame of reference. Understanding these principles is crucial for analyzing the behavior of charged particles in magnetic fields.
ApuroopS
Messages
6
Reaction score
0
a charged particle ( say 'q' ) moving with velocity 'V' in a region containing a magnetic field 'B' experiences a force 'F' given by:

F = q(VxB)

when
V = 0,
then force = 0

my doubt is,
is this velocity relative to the magnetic field ?
( i.e. when the velocity relative to the magnetic field becomes = 0, then force due to the magnetic field on the particle = 0 )


i know this question seems nonsensical...but please answer..thanks
 
Physics news on Phys.org
In a sense, yes it is relative to the B field, but this is hidden in the cross product. The magnitude of the velocity affects the amount of force experienced in the B field but the direction of travel with respect to the polarization of the magnetic flux density also matters. If the charge is moving with the magnetic flux's field lines, then there is no force while the force is maximized if the charge moves normal to the field lines. If you want to have the equation in strictly scalar form then,

\left| \mathbf{F} \right| = q \left| \mathbf{v} \right| \left| \mathbf{B} \right| \sin \theta

Where \theta is the angle between the velocity and magnetic flux density vectors.
 
If the observer were moving at a relativistic velocity with respect to a constant E or B field, or a constant E or B field were moving with respect to the observer, then there is an electromagnetic transformation of the longitudinal component that will produce a B or E component. To see the transformations, visit the LBL Particle Data Group website at

http://pdg.lbl.gov/2008/reviews/contents_sports.html

then click on the constants, units, etc. category, then click on the electromagnetic relations section, then look at the last four lines of the table.
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top