Differential Equations - Population Dynamics

hawks32
Messages
3
Reaction score
0
1. The problem statement
The DE governing a fish pop. P(t) with harvesting proportional to the population is given by:
P'(t)=(b-kP)P-hP
where b>0 is birthrate, kP is deathrate, where k>0, and h is the harvesting rate. Model assumes that the death rate per individual is proportional to the pop. size. An equilibrium point for the DE is a value of P so that P'(t)=0.

Find general solution of the DE, when..
a) h>b
b) h=b
c) h<b

The Attempt at a Solution


I'm having problems figuring out how to set up parts a) and c). I'm horrible at DE, so if anyone could help point me in the right direction, it would be greatly appreciated.
 
Physics news on Phys.org
P'(t)=(b-kP)P-hP
P'(t)=bP-kP2-hP
P'(t)= (b-h)P-kP2

P'(t)= ((b-h)-kP)P

P'(t)= dP/dt

so put it in the form

f(P) dP= f(t) dt

then integrate both sides.
 
okay, i worked the integral of dp/dt = ((b-h)-kP)P out as...



1/(b-h) * ln(p/b-h-kP) + C = t

is that correct?
 
Umm you have a P^2 in there. You should try partial fractions.
 
I did use partial fractions.

1/((b-h)-kP)P dp Let a = b-h

integral of 1/(a-kP)P = integral of A/a-kP + B/P

Solved for A & B, A = k/a, B = 1/a

So integral (k/a)/(a-kP) + (1/a)/p

end up with -(1/a)ln(a-kP) + (1/a)lnP
==> 1/a ln(P/(a-kP)) + C

sub back a = b-h

1/(b-h) * ln(p/(b-h-kP)) + C

Did I do something wrong?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top