Proving AB & BA Have Same Characteristic Polynomial - Simple Ways

  • Thread starter Thread starter td21
  • Start date Start date
  • Tags Tags
    Characteristic
Physics news on Phys.org


If you're happy that Det(AB)=Det(BA), then with I the identity matrix,
the characteristic polynomial is

p(x) = Det(AB-xI) = Det(IAB-xI2) = Det(B-1BAB-xB-1BI)
= Det(BABB-1-xBIB-1) = Det(BA-xI)
 


If A is invertible, than it is evident that AB and BA are similar matrices, therefore they have the same characteristic polynomial. Otherwise, we notice that the equation in lambda, det(A-lambda I)=0 has finitely many solutions. We can take epsilon such that, for all lambda 0<|lambda|<epsilon, A-lambda I is invertible. Therefore, (A-lambda I)B and B(A-lambda I) must have the same characteristic equation. Also, det(xI-(A-lambda I)B)=det(xI-B(A-lambda I)). For fixed x, each side of this equation is a polynomial in lambda, hence it is continuous. We can take lambda->0 and we are done.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top