Conservation of energy with a mass and pulley system.

AI Thread Summary
The discussion revolves around a physics problem involving two boxes connected by a rope over a frictionless pulley, with Box A weighing 15kg and Box B weighing 12kg. The system starts at rest with Box A positioned 0.85m above the ground. Participants analyze the forces acting on both boxes using free body diagrams and apply the conservation of energy principle to determine Box A's speed upon reaching the floor. The key equations include gravitational potential energy and kinetic energy, leading to the conclusion that the total initial energy equals the total final energy. The conversation emphasizes the need to equate initial and final energies to solve for the speed of Box A.
sdoi
Messages
37
Reaction score
0

Homework Statement


Two boxes are attached to opposite ends of a rope passing over a frictionless pulley as shown below. The mass of Box A is 15kg and the mass of box B is 12kg. The system is originally at rest with the bottom of box A at a height of o.85m above the floor. When the system is released, the boxes will move. Use conservation of energy to determine the speed with which Box A will contact the floor.


Homework Equations



Eg=mgΔh
Ek= 1/2 mv^2/2
ƩFy=may

The Attempt at a Solution


I started off by drawing free body diagrams of each mass, one at rest, and one in motion.

For mass A:
at rest,
ƩFy=0
Ft+Eg=0
Ft= Eg
= mgΔh
=(15kg)(9.8m/s^2)(0.85m)
Ft=125N

in motion,
ƩFy= may
Fg(A)-Ft= m(A)ay

For mass B:
at rest,
ƩFy=0
Fn-mg=0
Fn=mg
=(12kg)(9.8m/s^2)
Fn=117.6N

in motion,
ƩFy=may
Ft-Fg(B)= m(B)ay

I'm not sure if my original statement of Ft=Eg is accurate... and from this point on I don't know where to go.
 
Physics news on Phys.org
Why not find the initial and final energies and equate them?
 
As in, Etotal= Eg, Etotal'=Ek ?
 
System is originally at rest. Hence initial energy = ...
Final energy = ...
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...

Similar threads

Back
Top