Kinetic/potential energies for a ball thrown down

  • Thread starter Thread starter Kork
  • Start date Start date
  • Tags Tags
    Ball Energies
AI Thread Summary
A ball thrown downward from height h has both potential energy (PE = mgh) and kinetic energy (KE = 1/2mv^2) at different points in its trajectory. Initially, at height h, the ball has maximum potential energy and zero kinetic energy. As it falls, potential energy converts into kinetic energy, maintaining the total mechanical energy constant if no external forces act on the system. When the ball reaches the ground, its height is zero, and all energy is kinetic, represented by KE = 1/2mv^2. The conservation of energy principle ensures that the sum of potential and kinetic energies remains constant throughout the fall.
Kork
Messages
33
Reaction score
0
Hi again!

So, this time I have a ball with a mass m that I throw down from some point with a height h.

I want to write the kinetic and potentiel energies that the ball has in the start and in the end for this ball that is falling to h=0.

What I have thought of is that the ball must have a potential energy, u = mgh before it is thrown and when it hits the grown, and when it's moving down the energy is kinetic. I don't understand completely why and when it's undergoing a certain form of energy.

How does mgh=1/2mv^2 relate to this situation?

In my notes I also have that E = mgh + 1/2mv2 , which for some reason is the start energy?
 
Physics news on Phys.org
Or is this correct:

In the start I have that:
E = mgh + 1/2mv^2

What about when it hits the ground?
 
Kork said:
Or is this correct:

In the start I have that:
E = mgh + 1/2mv^2
Yes, where h is the initial height above the ground and v the initial speed at which you throw the ball.
What about when it hits the ground?
Energy is conserved, so that potential energy gets transformed to additional kinetic energy.

The same equation applies, only now the height is the final height and the velocity is the final velocity. The total energy remains the same as it was at the start.
 
The basic concept is that mechanical energy of a body is constant if no external force does work on it.

In the start just before you throw the ball, the ball was at height h above the ground and had speed 0.
When you throw it you apply a force which does work on it and instantaneously makes the ball have speed v.

From here, till the ball reaches the ground the only external force acting on it is the gravity.

Now consider the ball and Earth as a system so that gravity is now an internal conservative force and regard the energy due to it as potential energy.
Thus no external force acts on this system (till it hits the ground)and its total mechanical energy i.e sum of potential and kinetic energies is constant.

Initially the ball was at height h above the ground(where we regard potential energy to be 0).
So its Total E was mv^2/2 + mgh.

Later when it reached the ground (just before touching) suppose its speed becomes x.here height is 0 and body has only kinetic energy . Thus mx^2/2 = E.
 
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top