pedja
- 14
- 0
I asked this question on one another forum but didn't get any answer .
Consider the following array of natural numbers :
\begin{array}{ccccccccc}<br /> 1 & 2 & 4 & 7 & 11 & 16 & 22 & 29 & \ldots \\<br /> 3 & 5 & 8 & 12 & 17 & 23 & 30 & 38 & \ldots \\<br /> 6 & 9 & 13 & 18 & 24 & 31 & 39 & 48 & \ldots \\<br /> 10 & 14 & 19 & 25 & 32 & 40 & 49 & 59 & \ldots \\<br /> 15 & 20 & 26 & 33 & 41 & 50 & 60 & 71 & \ldots \\<br /> 21 & 27 & 34 & 42 & 51 & 61 & 72 & 84 & \ldots \\<br /> \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & <br /> \end{array}
Question : Are there infinitely many primes in every row of this array ?
My attempt :
The nth term of the first row is given by :
a_n=\frac{1}{2}(n^2-n+2)
\text{for}~ n=2k~\text {we have :}
a_{2k}=P(k)=2k^2-k+1
\text{and for}~ n=2k-1~\text{ we have :}
a_{2k-1}=Q(k)=2k^2-3k+2
Note that both P(k) and Q(k) are irreducible over integers .
Also note that : \gcd(P(1),P(2),\ldots)=1 ~\text{and}~ \gcd(Q(1),Q(2),\ldots)=1
So, according to Bunyakowsky conjecture both P(k) and Q(k) generates for natural arguments infinitely many prime numbers . Therefore , if Bunyakowsky conjecture is true first row contains infinitely many primes . One can draw same conclusion for all other rows .
Is my reasoning correct ? Is there some other approach to this problem ?
Consider the following array of natural numbers :
\begin{array}{ccccccccc}<br /> 1 & 2 & 4 & 7 & 11 & 16 & 22 & 29 & \ldots \\<br /> 3 & 5 & 8 & 12 & 17 & 23 & 30 & 38 & \ldots \\<br /> 6 & 9 & 13 & 18 & 24 & 31 & 39 & 48 & \ldots \\<br /> 10 & 14 & 19 & 25 & 32 & 40 & 49 & 59 & \ldots \\<br /> 15 & 20 & 26 & 33 & 41 & 50 & 60 & 71 & \ldots \\<br /> 21 & 27 & 34 & 42 & 51 & 61 & 72 & 84 & \ldots \\<br /> \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & <br /> \end{array}
Question : Are there infinitely many primes in every row of this array ?
My attempt :
The nth term of the first row is given by :
a_n=\frac{1}{2}(n^2-n+2)
\text{for}~ n=2k~\text {we have :}
a_{2k}=P(k)=2k^2-k+1
\text{and for}~ n=2k-1~\text{ we have :}
a_{2k-1}=Q(k)=2k^2-3k+2
Note that both P(k) and Q(k) are irreducible over integers .
Also note that : \gcd(P(1),P(2),\ldots)=1 ~\text{and}~ \gcd(Q(1),Q(2),\ldots)=1
So, according to Bunyakowsky conjecture both P(k) and Q(k) generates for natural arguments infinitely many prime numbers . Therefore , if Bunyakowsky conjecture is true first row contains infinitely many primes . One can draw same conclusion for all other rows .
Is my reasoning correct ? Is there some other approach to this problem ?