What Is the Intersection of Subspaces U and V in R^3?

AI Thread Summary
The discussion focuses on determining the intersection of two subspaces U and V in R^3, defined by specific equations. The user initially substitutes the parameters of U into the equation for V, resulting in a tautology (0 = 0), leading to confusion about whether the intersection is the entirety of R^3. However, it is clarified that since both U and V are 1-dimensional subspaces, their intersection must be either 1-dimensional or 0-dimensional, not R^3. A calculation shows that a non-zero point from U also satisfies the equation for V, confirming that U and V are indeed equal. Thus, the intersection of U and V is U, which is also V.
loli12
I have 2 subspaces U and V of R^3 which
U = {(a1, a2, a3) in R^3: a1 = 3(a2) and a3 = -a2}
V = {(a1, a2, a3) in R^3: a1 - 4(a2) - a3 = 0}

I used the information in U and substituted it into the equation in V and I got 0 = 0. So, does it mean that the intersection of U and V is the whole R^3 which has no restrictions on a1, a2 and a3 (they are free)? Or do the original restrictions on both the original subspaces still being applied to the intersection?
 
Physics news on Phys.org
The intersection of U and V cannot possibly be all of R³. How could the intersection of two sets be bigger than both of the sets? Both subspaces are 1-dimensional, so the intersection is either 1-dimensional or 0-dimensional. Can you find a non-zero point that is in both U and V? If so, then the intersection of U and V is U and is also V (i.e. U = V). A point in U takes the form (x, x/3, -x/3). Would such a point be in V?

x - 4(x/3) - (-x/3) = x - (4/3)x + (1/3)x = 0

so the answer is "yes."
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top