What is the difference between the following two:
not for every number E > 0 there is a corresponding number G >0 such that |F(x) - L| <E whenever 0< |x-a|<G
not for every number E > 0 there is not a corresponding number G >0 such that |F(x) - L| <E whenever 0< |x-a|<G
The first one is clearly just not (definition of continuity) and this is of course what you want to start with. The next line should be one step in the translation towards a sentence that is equivalent to not (def'n of continuity) but in some way more meaningful, i.e. it makes some positive claim. One problem with your second line is that the only difference from the first line is that you've thrown an extra "not" in there. Obviously then, the two sentences can't be equivalent. A bigger problem, however, is that all your sentences start with "not". You want to translate the initial not-sentence into a positive claim. For example, to turn the sentence, "it is not true that for all x, P is true of x" into a positive claim, you can say, "there exists an x such that P is not true of x."
I really don't know how to help you with this problem. Maybe you can put, in your own words, what you think the goal of the problem is, and also, since you must have thought at some point that the answer in post 16 was right, tell us what makes you think its right. What makes you think that line two is equivalent to line 1? What makes you think that line three is equivalent to line two?
I'll give you an example, see if you can understand it:
Let Y be a metric space, with metric d. Let X be any topological space, with topology T. C(X,Y) denotes the set of continuous functions from X to Y. Now let F be a subset of C(X,Y). Then F is equicontinuous if and only if:
for all x in X, for all e > 0, there is a neighbourhood U of x such that for all x' in U and for all f in F, d(f(x), f(x')) < e.
Symbolically:
(\forall x \in X)(\forall \epsilon > 0)(\exists U \in T)(x \in U\ \wedge \ (\forall x' \in U)(\forall f \in F)(d(f(x),\, f(x')) < e))
The negation of this sentence in words is:
it is not that for all x in X, for all e > 0, there is a neighbourhood U of x such that for all x' in U and for all f in F, d(f(x), f(x')) < e.
there exists x in X such that it is not that for all e > 0, there is a neighbourhood U of x such that for all x' in U and for all f in F, d(f(x), f(x')) < e.
there exists x in X such that there exists e > 0 such that there does not exist a neighbourhood U of x such that for all x' in U and for all f in F, d(f(x), f(x')) < e.
there exists x in X such that there exists e > 0 such that for all neighbourhoods U of x, it is not that for all x' in U and for all f in F, d(f(x), f(x')) < e.
there exists x in X such that there exists e > 0 such that for all neighbourhoods U of x, there exists x' in U such that it is not true that for all f in F, d(f(x), f(x')) < e.
there exists x in X such that there exists e > 0 such that for all neighbourhoods U of x, there exists x' in U such that there exists f in F such that it is not the case that d(f(x), f(x')) < e.
there exists x in X such that there exists e > 0 such that for all neighbourhoods U of x, there exists x' in U such that there exists f in F such that d(f(x), f(x')) > e.
Symbolically:
\neg (\forall x \in X)(\forall \epsilon > 0)(\exists U \in T)(x \in U\ \wedge \ (\forall x' \in U)(\forall f \in F)(d(f(x),\, f(x')) < e))
(\exists x \in X)\neg (\forall \epsilon > 0)(\exists U \in T)(x \in U\ \wedge \ (\forall x' \in U)(\forall f \in F)(d(f(x),\, f(x')) < e))
(\exists x \in X)(\exists \epsilon > 0)\neg (\exists U \in T)(x \in U\ \wedge \ (\forall x' \in U)(\forall f \in F)(d(f(x),\, f(x')) < e))
(\exists x \in X)(\exists \epsilon > 0)(\forall U \in T)\neg (x \in U\ \wedge \ (\forall x' \in U)(\forall f \in F)(d(f(x),\, f(x')) < e))
(\exists x \in X)(\exists \epsilon > 0)(\forall U \in T)(\neg(x \in U)\ \vee \ \neg (\forall x' \in U)(\forall f \in F)(d(f(x),\, f(x')) < e))
(\exists x \in X)(\exists \epsilon > 0)(\forall U \in T)(x \not \in U\ \vee \ (\exists x' \in U)\neg (\forall f \in F)(d(f(x),\, f(x')) < e))
(\exists x \in X)(\exists \epsilon > 0)(\forall U \in T)(x \not \in U\ \vee \ (\exists x' \in U)(\exists f \in F)\neg (d(f(x),\, f(x')) < e))
(\exists x \in X)(\exists \epsilon > 0)(\forall U \in T)(x \not \in U\ \vee \ (\exists x' \in U)(\exists f \in F)(d(f(x),\, f(x')) \not < e))
(\exists x \in X)(\exists \epsilon > 0)(\forall U \in T)(x \not \in U\ \vee \ (\exists x' \in U)(\exists f \in F)(d(f(x),\, f(x')) \geq e))
and if you like, you can go one step further and say:
(\exists x \in X)(\exists \epsilon > 0)(\forall U \in T)(x \in (X-U)\ \vee \ (\exists x' \in U)(\exists f \in F)(d(f(x),\, f(x')) \geq e))