I'll preface this by saying that for the duration of this post, in the images you posted the x-axis is horizontal and the z-axis is vertical (y-axis is into/out of the page)
Ok, so instead of being something in the front or the back of the sphere, if instead the point was off to the side (so maybe, from our perspective, at (-1,0,0) if we're looking at this from the negative y-axis), from our perspective it has a projection angle of zero, so the way of describing this isn't very good as it's not defined for two points I think. The top and bottom might not work either, as you have no up/down rotation to determine what the angle is.
I'm starting to see now, when you say
Sorry, this should read as "distance (as an angle) traveled around the great circle".
You're not actually traveling all the way around the sphere. That makes more sense.
I think what we need to do is describe the sphere in spherical coordinates.
If you don't know what they are, look here
http://en.wikipedia.org/wiki/Spherical_coordinates. we know the radius of the sphere is 1, so we can describe the point by stating the angle w.r.t. the z-axis (angle formed by the z-axis and the line from the origin to the point, always between 0 and 180) and the angle of the projection onto the x-y plane w.r.t. the x-axis, which is between 0 and 360. We'll call these P and T (P for phi, and T for theta. I'm too lazy to keep texing)
Then the coordinates of your point are (P,T). If you want the input as (x,y,z) that's fine, as we can algorithmically calculate P and T based on them. But input as (P,T) probably would be better depending on your application as there can't be any rounding error in making sure the point actually is on the sphere (e.g. if x,y,z are repeating or irrationals). Then based on the point's location, we can give a trajectory (p,t). For example, the zero degrees that you have up there would be described as (90,0) as , if you put the trajectories on the origin, they would form a 0 degree angle with the x-axis and a ninety degree angle with the z-axis. If it was a point on the side (one that I said you couldn't do with your system), then it would be (p, 90) or (p,270) depending on which way it was pointing. If the trajectory was pointing straight up or straight down, then the t portion wouldn't be well defined, but you can probably just put a 0 in there and find a way to make it work.
How the whole algorithm would come together I'm not entirely sure of yet, so I'll have to get back to you after thinking a bit