
#1
May2811, 01:41 PM

P: 160

It is a well known fact that a symmetric bilinear form B on a finitedimensional vector space V over any field F of characteristic not 2 is diagonalisable, i.e. there exists a basis [itex]\{e_i\}[/itex] such that [itex]B(e_i,e_j)=0[/itex] for [itex]i\neq j[/itex].
Does the same hold over an infinite dimensional vector space, provided that it has an algebraic basis? My insticts say no but I can't come up with a counterexample. Here's one possible candidate. Let V be the set of all sequences [itex]\{x_i\}_{i\geq1}[/itex] over F for which only finitely many of the [itex]x_i[/itex] are nonzero. Let B be the following symmetric bilinear form: [tex]B(\{x_i\},\{y_i\})=\sum_{i\geq1} (x_i y_{i+1}+ x_{i+1}y_i)[/tex] which is a finite sum. Can you find a basis for V which is orthonormal wrt B? Can you prove that no such basis exists? Thanks! 



#2
May2811, 03:46 PM

Mentor
P: 16,583

This is a GramSchmidt procedure for arbitrary symmetric bilinear forms. Of course, the process outlined there is only for finitedimensional spaces, but I don't think it's hard to check that we can actually extend this to the countable case. I started the calculations starting from the basis {(1,0,0,0,...),(1,1,0,0,...),(1,1,1,0,...),...} and I obtained the following 4 elements: [tex]\{(1,1,0,0,0,...),(1/2,1/2,0,0,0,...),(1,0,1,0,0,...),(3/2,0,3/2,1,0,...)\}[/tex] I have no doubt that this would give you an orthogonal basis in the end. However, I don't think there is an orthonormal basis for this space in general. The problem is here that there exists isotropic vectors (thus such that B(v,v)=0). If we could write [tex]v=\alpha_1e_1+...+\alpha_ne_n[/tex] for some orthonormal basis, then [tex]B(v,v)=\alpha_1^2+...+\alpha_n^2[/tex] but this can never be 0 (in a real vector space) unless v=0. Of course, the situation can be solved if we consider it as a complex vector space, then the basis outlined above can be modified to be a orthonormal basis. But then there might be other problems (which don't arise in this example). The form might be degenerate. Thus, there might exist v that is orthogonal to all vectors. We can find an orthogonal basis for this (but we willl have to put v in the orthogonal basis), but not an orthonormal basis... 



#3
May2911, 07:13 AM

P: 160

Thanks for the reply. Yes, I realise that we won't necessarily get an orthonormal basis; I meant to say orthogonal.
I've managed to get a proof for the countable case. Suppose you have a countable basis [itex]\{e_1,e_2,\ldots\}[/itex], and let [itex]V_n=\mathrm{span}\{e_1,\ldots,e_n\}[/itex]. The strategy is to construct inductively a sequence of bases [itex]\mathcal{B}_n[/itex] for [itex]V_n[/itex], orthogonal with respect to (the restriction of) the form B, with [itex]\mathcal{B}_n\subseteq \mathcal{B}_{n+1}[/itex]. This follows the normal GramSchmidt procedure, with the subtlety that you must demonstrate that [itex]V_{n+1}[/itex] contains a vector [itex]v[/itex], not in [itex]V_n[/itex], with [itex]B(v,v)\neq0[/itex]. Then the union of all these bases forms an orthogonal basis for the whole space. So we've extended the conclusion from finite to countable. But what if there isn't a countable basis? Let S be your favourite set, and V the set of functions from S to F with finite support, with pointwise operations. (Up to isomorphism, I think this is the most general vector space with an algebraic basis.) Is there some symmetric bilinear form on V with no orthogonal basis? I don't see how we can use anything like the same arguments here. Another similar question (which is probably more relevant to what made me think about this, namely the Killing form on infinite dimensional Lie algebras): what if we have a Banach space and ask the same question, but with basis having the analytic meaning rather than the algebraic one? I haven't thought much about this but I'm guessing it's true again for countable bases, though the proof will require some alteration. 



#4
May3011, 03:01 PM

Mentor
P: 16,583

Symmetric bilinear forms on infinite dimensional spaces
Hmm, if you consider symmetric bilinear forms on Hilbert spaces. A kind of symmetric bilinear form is this one: <x,Ty> with T a selfadjoint operator. The question that this form is diagonalizable is actually saying that T is diagonalizable. But I don't think that every selfadjoint operator is.
For example, consider [itex]T:L^2[0,1]\rightarrow L^2[0,1][/itex] with [itex]T(f)(x)=xf(x)[/itex]. If I'm correct then this has no eigenvalues, so it's not diagonizable. The corresponding symmetric bilinear form would be: [tex]B(f,g)=\int_0^1{xf(x)g(x)}[/tex]. I didn't check all the details, but this could work. I'm still searching for more satisfactory answers, but I've noticed that there is not really much theory on symmetric bilinear forms on infinitedimensional spaces... 



#5
May3111, 05:47 AM

P: 160

For the case of Hilbert spaces, I'm not sure if diagonalisability as an endomorphism [itex]V\to V^*\to V[/itex] (where the first map is the bilinear form and the second the Riesz isomorphism) is necessary for diagonalisability as a form. Thanks for your input. I'm not sure we're going to reach any firm conclusions here without disproportionate effort unfortunately.. 


Register to reply 
Related Discussions  
Hamel basis and infinitedimensional vector spaces!  Linear & Abstract Algebra  8  
Infinitedimensional vector spaces and their bases!  Linear & Abstract Algebra  21  
About the isomorphism of 2 infinitedimensional vector spaces  Linear & Abstract Algebra  3  
Bilinear forms & Symmetric bilinear forms  Linear & Abstract Algebra  3  
dimension of symmetric and skew symmetric bilinear forms  Linear & Abstract Algebra  2 