Register to reply

Inner product integration

by Dustinsfl
Tags: integration, product
Share this thread:
Nov3-11, 03:23 PM
P: 629
Space of continuous functions.

Inner product [tex]<f,g>=\int_{-1}^{1}f(x)g(x)dx[/tex].

Find a monic polynomial orthogonal to all polynomials of lower degrees.

Taking a polynomial of degree 3.


Need to check [tex]\gamma, x+\alpha, x^2+\beta x+ \lambda[/tex]

[tex]\int_{-1}^{1}(\gamma x^3+\gamma a x^2 +\gamma bx + \gamma c)dx[/tex]
[tex]=\frac{\gamma x^4}{4}+\frac{\gamma a x^3}{3}+\frac{\gamma b x^2}{2}+\gamma c x|_{-1}^{1}[/tex]
[tex]=\frac{2\gamma a}{3}+2\gamma c=0\Rightarrow c=-\frac{a\gamma}{3}[/tex]

[tex]\int_{-1}^{1}\left(x^4+ax^3+bx^2-\frac{a\alpha x}{3}+\beta x^3 +\alpha\beta x^2+b\beta x-\frac{a\alpha\beta}{3}\right)dx=6+10b+10a\beta-10a\alpha\beta=0[/tex]

What do I do with that?
Phys.Org News Partner Science news on
Scientists discover RNA modifications in some unexpected places
Scientists discover tropical tree microbiome in Panama
'Squid skin' metamaterials project yields vivid color display
Nov3-11, 04:51 PM
Sci Advisor
P: 906
well, are you given the degree you polynomial is supposed to be, or are you suppose to find a formula for any n (degree)?

for n = 0, we can choose p0(x) = 1 (we don't have any polynomials of lesser degree, so any constant will do. i like 1, don't you?).

for n = 1, the only requirement is that <p1(x),c> = 0 for any constant polynomial k(x) = c, that is:

[tex]\int_{-1}^1(ax+b)c\ dx = 0[/tex]

or: 2b = 0, so b = 0, thus p1(x) = ax. again there is no reason not to choose a = 1.

for n = 2, we need <p2,c> = 0, and <p2,ax+b> = 0

if p2(x) = rx2+sx+u, this means r = -3u, from the first inner product, and s = 0 from the second.

so p2(x) = u(3x2 - 1). again, any non-zero choice will do, although one might be inclined to choose u such that <p2(x),p2(x)> = 1.

now, for n = 3:

you may as well assume that γ ≠ 0, since it is arbitrary, which gives:

c = -a/3, not c = -aγ/3 (just divide by γ).

in your second inner product, you start with x+β, instead of x+α, and somehow wind up with something with α's and β's. huh? pick a variable for the constant term of your generic linear polynomial, and stick with it.

Register to reply

Related Discussions
Integration (inner product) Calculus & Beyond Homework 2
Integration of the dot product of two vectors Calculus 5
Integration Involving Dot Product? General Math 5
Integration involving a dot product Calculus 12