Inverse Laplace Transfrom - Taylor Series/Asymptotic Series?

chrissimpson
Messages
11
Reaction score
0

Homework Statement



W(x,s)=(1/s)*(sinh(x*s^0.5))/(sinh(s^0.5))

Find the inverse laplace transform of W(x,s), i.e. find w(x,t).

Answer:

w(x,t)= x + Ʃ ((-1)^n)/n) * e^(-t*(n*pi)^2) * sin(n*pi*x)

summing between from n=1 to ∞


Homework Equations



An asymptotic series..?!

The Attempt at a Solution



Taking the Taylor series for sinh 'simplifies' the expression to:

W(x,s)=(1/s)*(x + x^3 + x^5 +x^7 ...)

You can write this as:

W(x,s)=(x/s)+(1/s)*(x^3 + x^5 + x^7...)

W(x,s)= (x/s) + Ʃ(x^2n+1)/s

summing between n=1 and ∞

This is where I think I begin to run into trouble (unless I already have!) as I think I would now form:

w(x,t)= x + Ʃ(x^2n+1)


There is some mention in a similar question that an asymptotic series was used, but I can't work out how to make this fit in with the question!


Any help would be really appreciated!

Chris
 
Physics news on Phys.org
I got involved with things like this when I was looking at plasma physics, you want to use a branch cut in you inverse transform and usae the Bromwich inversion formula.
 
Cheers! I'll have a look into that. Any idea how painfully difficult this will be - I'm coming towards the (current) limit of my mathematical capabilities with this non-homogeneous PDE stuff!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top