Why does the binomial series have an infinite number of terms?

  • Thread starter Thread starter Nikitin
  • Start date Start date
  • Tags Tags
    Series
Nikitin
Messages
734
Reaction score
27
Hello. I'm revising the material in preparation for the exam, and I found something I fail at understanding.

When defining binomial series, http://en.wikipedia.org/wiki/Binomial_series, why is the sum of the binomial "(m k)" going from 1 to ? Shouldn't it instead be going from 1 to m (the function can only be differentiated m times)?

Afterall, binomial series are a form of taylor series, and a taylor series of a function can't have infinite terms when the function can only be differentiated a finite amount of times.
 
Mathematics news on Phys.org
Which function can only be differentiated m times? The binomial series is the Taylor series at x=0 of (1+x)α for some complex number α. And (1+x)α can be differentiated infinitely often, unless α is a non-negative integer.
 
Just because all but finitely many terms are zero does not mean that you cannot consider a series as having infinitely many terms. The function f(x) = (1+x)^m can be differentiated more than m times. It's just that all of the derivitives are eventually zero.

It looks to me like a choice to make the summation look more like the generic form of the Taylor series (which it is, after all) rather than an equally accurate truncation thereof.
 
Michael: oops, sorry. My book used the notation of m instead of a, and I have little knowledge of complex numbers (I'm only doing my 1st semester).

jbriggs: yeh, so it's just a formal thing? Allright, that's good enough 4 me :)
 
The binomial series for (1+x)^\alpha has infinitely many terms except when \alpha is a non-negative integer (even when \alpha is real).
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
1K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
3
Views
3K
Back
Top