Register to reply

Why does an asteriod burn up in the atmosphere but a space shuttle wont?

by Jd0g33
Tags: asteriod, atmosphere, burn, shuttle, space
Share this thread:
Jd0g33
#1
Feb4-13, 04:59 PM
P: 326
Is it because the speed at which the asteroid is coming in greatly increases the friction between it and the air molecules in the atmosphere?
Phys.Org News Partner Astronomy news on Phys.org
Chandra X-ray Observatory finds planet that makes star act deceptively old
Astronomers release most detailed catalogue ever made of the visible Milky Way
Planets with oddball orbits like Mercury could host life
kevinferreira
#2
Feb4-13, 05:07 PM
P: 123
The shuttle was made to survive it (aerodynamics, materials, mechanics), the asteroid wasn't.
berkeman
#3
Feb4-13, 05:24 PM
Mentor
berkeman's Avatar
P: 41,317
Quote Quote by lundyjb View Post
Is it because the speed at which the asteroid is coming in greatly increases the friction between it and the air molecules in the atmosphere?
Quote Quote by kevinferreira View Post
The shuttle was made to survive it (aerodynamics, materials, mechanics), the asteroid wasn't.
More specifically, the heat shield tiles on the Space Shuttle (or the heat shield on earlier re-entry vehicles/capsules) are designed to have a very low thermal conductivity from the outside ionized air to the inside metal vehicle parts:

http://en.wikipedia.org/wiki/Space_S...tection_system

The asteroid has no such protection.

SteamKing
#4
Feb4-13, 07:18 PM
Emeritus
Sci Advisor
HW Helper
Thanks
PF Gold
P: 6,737
Why does an asteriod burn up in the atmosphere but a space shuttle wont?

Who says that a space shuttle won't burn up on re-entry?

Look up the space shuttle Columbia, 2003.
Astronuc
#5
Feb4-13, 07:37 PM
Admin
Astronuc's Avatar
P: 21,914
Quote Quote by SteamKing View Post
Who says that a space shuttle won't burn up on re-entry?

Look up the space shuttle Columbia, 2003.
Certainly it will if the Thermal Protection System is compromised, as was the case with Columbia. If the TPS is intact, Shuttles return to earth safely as they have done 128 times.
Jd0g33
#6
Feb4-13, 07:59 PM
P: 326
So does it have anything to do with speed and friction? If i were moving at 50 miles an hour from the tip top of the atmosphere to the ground, i wouldn't burn up, right?
chill_factor
#7
Feb4-13, 08:09 PM
P: 900
Quote Quote by lundyjb View Post
So does it have anything to do with speed and friction? If i were moving at 50 miles an hour from the tip top of the atmosphere to the ground, i wouldn't burn up, right?
you will accelerate until you hit terminal velocity which is still quite high. however just because you're at terminal velocity doesn't mean your potential energy stops dropping; it is still dropping and being converted to other forms, such as heat.
Drakkith
#8
Feb4-13, 08:10 PM
Mentor
Drakkith's Avatar
P: 12,006
Quote Quote by lundyjb View Post
So does it have anything to do with speed and friction? If i were moving at 50 miles an hour from the tip top of the atmosphere to the ground, i wouldn't burn up, right?
No, you would survive easily. An asteroid is moving at several miles per second on average I believe. The space shuttle re-entered at about around Mach 25, 8,200 m/s (30,000 km/h; 18,000 mph).
chill_factor
#9
Feb4-13, 08:30 PM
P: 900
Quote Quote by Drakkith View Post
No, you would survive easily. An asteroid is moving at several miles per second on average I believe. The space shuttle re-entered at about around Mach 25, 8,200 m/s (30,000 km/h; 18,000 mph).
but you can't stay at 50 mph. you need external power to resist acceleration downwards. even when you stop accelerating your potential doesn't stop dropping, that potential just gets turned to heat.
Drakkith
#10
Feb4-13, 10:23 PM
Mentor
Drakkith's Avatar
P: 12,006
Quote Quote by chill_factor View Post
but you can't stay at 50 mph. you need external power to resist acceleration downwards. even when you stop accelerating your potential doesn't stop dropping, that potential just gets turned to heat.
Yes I realize that. But the question was if your speed remained at 50 mph. If you could remain at 50 mph, which really isn't that far fetched, you would not burn up. I'm sure a very lightweight probe or something could be rigged with the right gear to keep it at 50 mph during its fall.
StrayCatalyst
#11
Feb5-13, 11:40 AM
P: 22
Lightweight or not, if it had mass it would accelerate towards the Earth to greater than 50 MPH. If it were able to enter the atmosphere at a low enough speed, the thin air striking it would not have enough friction to burn it up, but unless you're using antigravity, a space elevator, or some similar, your mass will be gaining speed until it hits terminal velocity. As the atmosphere gets thicker, terminal velocity gets to be MUCH slower - but your craft would already be going fast enough that the friction of the air would become a problem.

The shuttle is shaped to present a single surface to the rushing air, and has heat tiles, which are both insulative and ablative - they carry away most of the heat as opposed to conducting it to the shuttle itself. When the tiles are damaged or compromised, the shuttle and its contents die upon re-entry - just like an asteroid, or anything else that hits the atmosphere at a high enough speed.

Take a theoretical mass - call it a pingpong ball - and drop it from outside of the atmosphere. It has mass, so it's attracted to the Earth, and gains speed as it goes (about 9.81 m/s, disregarding the difference in gravity from that distance), accelerating without drag until it hits the atmosphere. If it's going slowly enough - ie, if it was dropped from just above the atmosphere, and didn't have time to gain a lot of speed - it will hit the air and slow down to terminal velocity (which gets slower as the air gets thicker, but the ball would probably survive). If it's dropped from a greater height, it's going fast enough that when it hits the air, the friction generated will turn it from solid to gas almost instantly - it's a shooting star, white-hot for a fraction of a second, then gone without a trace as dispersing gases in the upper atmosphere.
russ_watters
#12
Feb5-13, 07:08 PM
Mentor
P: 22,315
Quote Quote by StrayCatalyst View Post
...but unless you're using antigravity, a space elevator, or some similar, your mass will be gaining speed until it hits terminal velocity.
What's wrong with a regular-old rocket engine?
Drakkith
#13
Feb5-13, 07:39 PM
Mentor
Drakkith's Avatar
P: 12,006
Quote Quote by russ_watters View Post
What's wrong with a regular-old rocket engine?
That's what I was thinking of. Or anything to create thrust or lift.
Astronuc
#14
Feb5-13, 08:03 PM
Admin
Astronuc's Avatar
P: 21,914
Quote Quote by lundyjb View Post
So does it have anything to do with speed and friction? If i were moving at 50 miles an hour from the tip top of the atmosphere to the ground, i wouldn't burn up, right?
Yes - speed and momentum/energy transfer, as well as friction, which is a shear force.

http://www.faa.gov/other_visit/aviat...om%20Space.pdf

Meteors do not have thermal protection systems, but rather as they heat up, the heat generated at the surface can melt or vaporize the meteorite. It can slow down quickly, and in some cases survive to the surface.

To avoid melting/failure, the thermal protection system must radiate heat away, while preventing conduction of heat to the structure supporting it.

http://www.grc.nasa.gov/WWW/BGH/hihyper.html

http://www.nasa.gov/mission_pages/sh...anding101.html
Quote Quote by NASA, landing101.html
TIG-1 hour
Mission Control gives the "go" for deorbit burn.

DEORBIT BURN
The orbiter and crew are officially on their way home.

During reentry and landing, the orbiter is not powered by engines. Instead, it flies like a high-tech glider, relying first on its steering jets and then its aerosurfaces to control the airflow around it.

Landing-30 minutes
Roughly half an hour after the deorbit burn, the orbiter will begin to encounter the effects of the atmosphere. Called entry interface, this point usually takes place at an altitude of about 80 miles, and more than 5,000 statute miles from the landing site.

Early in reentry, the orbiter's orientation is controlled by the aft steering jets, part of the reaction control system. But during descent, the vehicle flies less like a spacecraft and more like an aircraft. Its aerosurfaces -- the wing flaps and rudder -- gradually become active as air pressure builds. As those surfaces become usable, the steering jets turn off automatically.

To use up excess energy, the orbiter performs a series of four steep banks, rolling over as much as 80 degrees to one side or the other, to slow down. The series of banks gives the shuttle's track toward landing an appearance similar to an elongated letter "S."

As the orbiter slices through the atmosphere faster than the speed of sound, the sonic boom -- really, two distinct claps less than a second apart -- can be heard across parts of Florida, depending on the flight path.
lpetrich
#15
Feb5-13, 09:09 PM
P: 533
Actually, an asteroid would survive entering the Earth's atmosphere. The Earth has numerous meteorites and impact craters, which are plenty of evidence of that.
dgh856
#16
Feb6-13, 09:09 PM
P: 2
Quote Quote by Drakkith View Post
Yes I realize that. But the question was if your speed remained at 50 mph. If you could remain at 50 mph, which really isn't that far fetched, you would not burn up. I'm sure a very lightweight probe or something could be rigged with the right gear to keep it at 50 mph during its fall.
I'm not sure keeping something falling through the atmosphere at 50 MPH is as simple as you think. Even with a very lightweight probe, the amount of fuel you would need to keep it at 50 MPH with a rocket engine after de-orbiting it would be incredible, and add incredible weight. Other systems, like parachutes, wouldn't become effective until the atmosphere is significantly thick, before which the body would undergo catastrophic friction anyway.

The actual ΔV to slow a falling body, especially a lightweight one, to 50 MPH wouldn't be that extraordinary, but keeping it at 50 MPH for the hours it would take to pass through the atmosphere at that velocity would be impossible. You'd need literally tons of fuel or a parachute the size of a medium-sized state.
Drakkith
#17
Feb6-13, 09:24 PM
Mentor
Drakkith's Avatar
P: 12,006
Quote Quote by dgh856 View Post
I'm not sure keeping something falling through the atmosphere at 50 MPH is as simple as you think. Even with a very lightweight probe, the amount of fuel you would need to keep it at 50 MPH with a rocket engine after de-orbiting it would be incredible, and add incredible weight. Other systems, like parachutes, wouldn't become effective until the atmosphere is significantly thick, before which the body would undergo catastrophic friction anyway.

The actual ΔV to slow a falling body, especially a lightweight one, to 50 MPH wouldn't be that extraordinary, but keeping it at 50 MPH for the hours it would take to pass through the atmosphere at that velocity would be impossible. You'd need literally tons of fuel or a parachute the size of a medium-sized state.
Why are we even talking about how feasible it would be? I never claimed it would be easy, only that an object moving at 50 mph would not burn up. I'm sure we can all agree that the OP is simply trying to understand the way friction works during re-entry, not develop a way to fall at 50 mph through the atmosphere.
dgh856
#18
Feb6-13, 09:29 PM
P: 2
Quote Quote by Drakkith View Post
Why are we even talking about how feasible it would be? I never claimed it would be easy, only that an object moving at 50 mph would not burn up. I'm sure we can all agree that the OP is simply trying to understand the way friction works during re-entry, not develop a way to fall at 50 mph through the atmosphere.
Given that the OP's original question has been correctly answered several times already, I was simply replying to what you said out of interest. Wasn't trying to upset anyone.


Register to reply

Related Discussions
Why do meteors burn up in our atmosphere / why are they moving so fast? General Physics 19
How long does shuttle re-entry burn last? General Physics 11
Space shuttle Mechanical Engineering 7
WHy does shuttle burn on re-entry? General Physics 22
End of the Space Shuttle? Mechanical Engineering 1