Register to reply

Why are fractals and chaos theory synonymous?

by JizzaDaMan
Tags: chaos, fractals, synonymous, theory
Share this thread:
JizzaDaMan
#1
Jan31-14, 05:12 AM
P: 47
I'm doing a presentation in a few weeks on fractals and chaos theory.
To me, their link is more intuitive than mathematically/physically sound, and I'm really struggling to put the link into words.

I've tried googling it, but no where seems to give a satisfactory explanation of the link, they're just stuck together for no apparent reason.

Bear in mind that the explanation needs to be in layman's terms. In my case, a graphical, pictorial or intuitive explanation will be sufficient. An example where the link is clear would also work.

Many thanks for any responses :)
Phys.Org News Partner Mathematics news on Phys.org
Math journal puts Rauzy fractcal image on the cover
Heat distributions help researchers to understand curved space
Professor quantifies how 'one thing leads to another'
phinds
#2
Jan31-14, 06:22 AM
PF Gold
phinds's Avatar
P: 6,505
Hm ... I don't see any link at all. Fractals are a well-defined, organized structure that can be represented mathematically. Chaos theory is a whole filed of study. I think you are barking up the wrong tree on this. Certainly, to say they are synonymous is just silly.
Filip Larsen
#3
Jan31-14, 06:42 AM
PF Gold
Filip Larsen's Avatar
P: 961
If you take a fractal to mean a (geometrical) structure that is self-similar on a finite or infinite range of scale with regard to some measure, then certain descriptions (like poincare maps [1] and bifurcation diagrams[2]) of chaotic systems may, as you probably know, exhibit a fractal structure. In that sense you could argue that chaos theory utilize some of the concepts (or definitions, if you like) from fractal theory, but I don't think you would be able to take it much further than that. To my knowledge (which unfortunately is some years old in this area) the theory of fractals does not by itself give any additional general insight into the behavior of chaotic systems. For instance, you should not expect to find a link between chaos and fractal that is similar to the hydraulic analogy [3].


[1] http://en.wikipedia.org/wiki/Poincar%C3%A9_map
[2] http://en.wikipedia.org/wiki/Bifurcation_diagram
[3] http://en.wikipedia.org/wiki/Hydraulic_analogy

JizzaDaMan
#4
Jan31-14, 04:06 PM
P: 47
Why are fractals and chaos theory synonymous?

The reason I say synonymous is that whenever you google chaos theory, you almost always get fractals too.
JizzaDaMan
#5
Jan31-14, 04:14 PM
P: 47
I'm going to be linking fractals and chaos theory to life and the universe, so what about something along these lines:

universe is chaotic; changing the initial 'parameters' would result in a totally different universe.
universe is like a fractal - infinite and similar complexity on every level.

Or something to that effect. So rather than link the two, link them both to the same thing. Thoughts?
Number Nine
#6
Feb1-14, 12:23 AM
P: 772
Quote Quote by JizzaDaMan View Post
I'm going to be linking fractals and chaos theory to life and the universe, so what about something along these lines:

universe is chaotic; changing the initial 'parameters' would result in a totally different universe.
universe is like a fractal - infinite and similar complexity on every level.

Or something to that effect. So rather than link the two, link them both to the same thing. Thoughts?
Those connections are so tenuous that you're no longer doing mathematics. Why not use an actual chaotic system as an example?


Register to reply

Related Discussions
Fractals and chaos - what do they have in common? General Math 3
Link between fractals and chaos General Physics 11
Textbooks on Fractals and Chaos Differential Geometry 1
Fractals & Chaos General Math 3
All fractals are models of CHAOS! General Discussion 8