Finding Area in Polar Coordinates

Kawrae
Messages
46
Reaction score
0
The problem is to find the area of r = 4cos3θ.

I know the formula for finding the area in polar coordinates is ∫ (from α to β) ½r²dθ.

I substituted into this formula the given equation and got:
A = ½ ∫ (from 0 to 2π) (4cos3θ)²dθ
= ½ ∫ (from 0 to 2π) (16cos²9θ)dθ
= 8 [(9/2)θ + (9/4)sin18θ) |(2π - 0)]
= 8 (9π + 0)
= 72π

This answer seems really high and the answer in the books gives an answer of 4π... can someone help show me where exactly I am messing up? Thanks :)
 
Physics news on Phys.org
Something nice to remember is that cos and sin squared have an average value of 1/2 over a period of 2pi
 
Do not square 3*theta when you square the cosine function! Also you have gotten the integral (line 3 above) wrong, although it won't change your answer. Please look up the integral of cos^2 again. Finally, are you sure you are supposed to integrate from 0 to 2pi?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top