Rocket with Variable Mass and Air Resistance.

AI Thread Summary
The discussion focuses on calculating the terminal velocity of a rocket with variable mass and air resistance. The rocket's mass decreases as fuel burns at a constant rate, while air resistance is modeled as a linear function of velocity. The user is struggling with integrating the differential equation that describes the rocket's motion, particularly isolating velocity for integration. Clarifications are provided on the nature of the differential equation and tips for simplifying the integration process. Ultimately, the conversation emphasizes the importance of understanding the effects of air resistance compared to a scenario without it.
holdenthefuries
Messages
5
Reaction score
0
Problem:

A rocket is launched vertically upward. The rocket has a mass Mr and carries Mo of fuel. The fuel burns at a constant rate (ß) and leaves the rocket at speed Ve relative to the rocket. Assume constant gravity (9.8m/sec^2). There is an air resistance given by F(a) = -kV.

Where V is the velocity of the rocket.

Take:

k = .1 n-sec/m
ß = 100 kg/sec
Mr = 1000 kg
Mo = 10000 kg
Ve = 3000 m/sec

What is the terminal velocity of the rocket (the velocity when fuel runs out)?

-----The general solution for this problem is an extension of conservation of momentum for a system of variable mass.

mdv/dt = ∑F(ext) + Vrel(dM/dt)

I have no problem when the external force is solely gravity, however, when this problem presents linear air resistance, I am running into a bit of trouble with the integration.

My setup of the differential equation is as follows:Set dm/dt to constant. dM/dt = ß = 100 kg/sec.

(=)

mdv/dt = 100Ve - mg - kV

--->

dv/dt + kV/m = (100Ve/m - g)


I am attempting to integrate the velocity from V(0) to V(Terminal), and the time from t=0 to t=t(final)= Mo/ß = 10000/100 = 100 seconds.

My question is regarding the velocity portion of the differential equation.

I can't seem to get that V over to the left side of the integral by itself... and I'm wondering if I could get some sort of example on how to do that type of integration, or if I've gone astray somewhere.

Does this integration qualify as a first order differential?

i.e.

dy/dx + P(x)y = Q(x) ?Addendum:

Okay, so I've set up the equation:

m/k(100Ve/m-g) - (m/k(100Ve/m-g)e^(-kt/m))

Thanks!

Sean
 
Last edited:
Physics news on Phys.org
Yeah, it does. The solution's ye^{\int p(x)}=\int Q(x)e^{\int P(x)}dx
 
Tips for making this easier:

Remember that ultimately the mass is constant (since the M comes from the force being applied) and don't try and trick yourself into thinking that it is a variable in the end.

In a rocket formula with linear air resistance, it is helpful to compare your answer to something you'd expect without air resistance.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top