MadMax
- 98
- 0
We have
\epsilon(i f, r) = \epsilon_2(i f) when H + h_2(x) \leq z < + \infty
\epsilon(i f, r) = 0 when h_1(x) < z < H + h_2(x)
\epsilon(i f, r) = \epsilon_1(i f) when - \infty < z \leq h_1(x)
show the corresponding Fourier transform is
\frac{i}{q_z} \int d^2x e^{iq_\bot \cdot x}[\epsilon_2 e^{iq_z[H+h_2(x)]} - \epsilon_1 e^{iq_z h_1(x)}]
I've looked in a few books but tbh I have no real idea how to show this...
Any help/suggestions/tips would be much appreciated. Thanks.
\epsilon(i f, r) = \epsilon_2(i f) when H + h_2(x) \leq z < + \infty
\epsilon(i f, r) = 0 when h_1(x) < z < H + h_2(x)
\epsilon(i f, r) = \epsilon_1(i f) when - \infty < z \leq h_1(x)
show the corresponding Fourier transform is
\frac{i}{q_z} \int d^2x e^{iq_\bot \cdot x}[\epsilon_2 e^{iq_z[H+h_2(x)]} - \epsilon_1 e^{iq_z h_1(x)}]
I've looked in a few books but tbh I have no real idea how to show this...
Any help/suggestions/tips would be much appreciated. Thanks.
Last edited: