Fourier representation of aperiodic irregular function

MadMax
Messages
98
Reaction score
0
We have

\epsilon(i f, r) = \epsilon_2(i f) when H + h_2(x) \leq z < + \infty
\epsilon(i f, r) = 0 when h_1(x) < z < H + h_2(x)
\epsilon(i f, r) = \epsilon_1(i f) when - \infty < z \leq h_1(x)

show the corresponding Fourier transform is

\frac{i}{q_z} \int d^2x e^{iq_\bot \cdot x}[\epsilon_2 e^{iq_z[H+h_2(x)]} - \epsilon_1 e^{iq_z h_1(x)}]

I've looked in a few books but tbh I have no real idea how to show this...

Any help/suggestions/tips would be much appreciated. Thanks.
 
Last edited:
Physics news on Phys.org
a small hint please?
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...

Similar threads

Back
Top