How did ancient Greeks use geometry to solve algebraic equations?

  • Thread starter Thread starter Yann
  • Start date Start date
  • Tags Tags
    Algebra
AI Thread Summary
Ancient Greeks utilized geometric methods to solve algebraic equations by establishing relationships between line segments. They demonstrated that for a line segment divided into parts, the ratios of these segments could be expressed geometrically. A specific example involves finding a point x such that the ratio of segments AB to AX equals the ratio of AX to AC, leading to the equation 2a^2 = x^2. This method parallels the concept of the golden ratio, where the relationship between segments reflects proportionality. Ultimately, they employed geometric constructions, such as circles and perpendiculars, to derive the lengths of segments through intersecting chords.
Yann
Messages
48
Reaction score
0
I've heard ancient greeks were able to solve algebra using geometry.

For example, if you have a line between two points AC (B being right in the middle), can you find a point x so;

AB/AX = AX/AC

if a is length of AB, then AB = a and AC = 2a, so the problem is really about;

a/x = x/a2; 2a^2 = x^2; 2^(1/2)a = x, if a = 1 then x = 2^(1/2).

How could they find the point x ?
 
Mathematics news on Phys.org
Are you talking about the golden ratio? Where the large length is to the smaller segment as the whole line is to the large part? Let x = long part, and L = total length: x/(L-x) =L/x
 
Yann said:
AB/AX = AX/AC
Cross ratios are easy! Note that's the same as:

AB * AC = AX * AX

So, you just make a line segment:

C ----- D ------------ E

with CD = AB and DE = AC. Then you construct a circle with CE as its diameter. Draw the perpendicular at D, which intersects the circle at points F and G. Note that DF and DG are congruent.

Now, you have two chords intersecting, and thus you have:

DC * DE = DF * DG

and so

AB * AC = DF * DF

So DF is the length you seek.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top