exact differential


by zeshkani
Tags: differential, exact
zeshkani
zeshkani is offline
#1
Sep2-07, 03:27 PM
P: 29
how would i show that this is the exact differential

z=xy-y+lnx+2
dz= (y+ 0)dx + (x-1)dy (i hope the total differential is right)

so how would i show that dz is the exact differential ???
Phys.Org News Partner Science news on Phys.org
Cougars' diverse diet helped them survive the Pleistocene mass extinction
Cyber risks can cause disruption on scale of 2008 crisis, study says
Mantis shrimp stronger than airplanes
quasar987
quasar987 is offline
#2
Sep2-07, 03:36 PM
Sci Advisor
HW Helper
PF Gold
quasar987's Avatar
P: 4,768
The definition of the total differential of a function f(x,y) is the expression

[tex]df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy[/tex]

Now with the z you're given, is the expression for dz correct? That is to say, is

[tex]\frac{\partial z}{\partial x}=(y+0)[/tex]

and

[tex]\frac{\partial z}{\partial y}=(x-1)[/tex]

??
zeshkani
zeshkani is offline
#3
Sep2-07, 03:39 PM
P: 29
i believe dz is correct because i used partial differentials to solve it, and i hope its correct

quasar987
quasar987 is offline
#4
Sep2-07, 04:21 PM
Sci Advisor
HW Helper
PF Gold
quasar987's Avatar
P: 4,768

exact differential


what is the derivative of ln(x)?
HallsofIvy
HallsofIvy is offline
#5
Sep3-07, 05:55 AM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 38,898
Once you fixed the derivative of ln x thing, the fact that dz is the total derivative of z pretty much means it is an "exact" differential. That's the definition of "exact" differential!
zeshkani
zeshkani is offline
#6
Sep3-07, 01:35 PM
P: 29
thx and the derivative of lnx is just 1/x
HallsofIvy
HallsofIvy is offline
#7
Sep3-07, 04:39 PM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 38,898
Yes.
z=xy-y+lnx+2 so
dz= (y+ 1/x)dx + (x-1)dy

And that is an "exact" differential precisely because it is the differential of z.

Now suppose you were given the differential form (y+ 1/x)dx+ (x- 1)dy without having been given z. How would you determine whether it was an exact differential?
If
[tex](y+ 1/x)= \frac{\partial z}{\partial x}[/tex]
for some function z and
[tex]x-1= \frac{\partial z}{\partial y}[/tex]
then
[tex]\frac{\partial(y+ 1/x)}{\partial y}= \frac{\partial^2 z}{\partial x\partial y}[/tex]
and
[tex]\frac{\partial(x-1)}{\partial x}= \frac{\partial^2 z}{\partial y\partial x}[/tex]
and so must be equal. Fortunately, it is easy to see that each second derivative is 1 and so they are in fact equal.
Okay, now, how would we find z? Knowing that
[tex]x-1= \frac{\partial z}{\partial y}[/tex]
integrating with respect to y (treating x as a constant) we get z= xy- y+ C, except that, since we are treating x as a constant, that "constant of integration", C, may depend on x: z= xy- y+ C(x). Differentiating that with respect to x,
[tex]\frac{\partial z}{\partial x}= y+ C'(x)= y+ 1/x[/tex]
Notice that the "y" terms cancel (it was the "cross condition" above that guarenteed that) and so we have C'(x)= 1/x. Then C(x)= ln(x)+ C where "C" now really is a constant.
Any z(x,y)= xy- y+ ln(x)+ C satisfies dz= (y+ 1/x)dx+ (x-1)dy.


Register to reply

Related Discussions
Exact differential equations Calculus & Beyond Homework 4
Exact differential equations Differential Equations 24
Exact differential problem Calculus & Beyond Homework 0
If curvature were an exact differential Differential Geometry 7