Kinetic energy of harmonic oscilator

stunner5000pt
Messages
1,443
Reaction score
4
[SOLVED] Kinetic energy of harmonic oscilator

Homework Statement


Find the expectation value of the kinetic energy of the nth state of a Harmonic oscillator


Homework Equations


<T> = \frac{<p^2>}{2m}
p_{x} = \frac{1}{i} \sqrt{\frac{m\hbar\omega}{2}} (\hat{a} -\hat{a}^\dagger)
a^\dagger \psi_{n} = \sqrt{n+1} \psi_{n+1}
a\psi_{n} = \sqrt{n-1} \psi_{n-1}

The Attempt at a Solution


So p_{x}^2 = \left(\frac{1}{i} \sqrt{\frac{m\hbar\omega}{2}} (\hat{a} -\hat{a}^\dagger)\right)^2


So to calculate the <T> do i just do this:
&lt;T&gt; = &lt;\Psi_{n}|\frac{p^2}{2m}|\Psi(n)&gt;
&lt;T&gt; = -\frac{\hbar\omega}{4} \int \psi_{n}^* (aa - aa^\dagger - a^\dagger a + a^\dagger a^\dagger) \psi_{n} dx

&lt;T&gt; = -\frac{\hbar\omega}{4} \int\psi_{n}^* \sqrt{n(n-1)} \psi_{n-2} + \sqrt{n(n+1)}\psi_{n} + \sqrt{n^2} \psi_{n} + \sqrt{(n+1)(n+2)} \psi_{n+2} dx

only one term will survive, the nth state ones because the wave functions are orthogonal
&lt;T&gt; = -\frac{n\hbar\omega}{4}

Is this correct??

Thanks for your help!
 
Physics news on Phys.org
Negative Kinetic energy is not allowed.

In your final integral, two of four terms will survive.

And also:
a\psi_{n} = \sqrt{n-1} \psi_{n-1}
should be:
a\psi_{n} = \sqrt{n} \psi_{n-1}
 
thanks i got the required answer!
where do i mark this solved?
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top