Help with pool ball pyramid problem

  • Thread starter Thread starter Blade707
  • Start date Start date
  • Tags Tags
    Ball Pyramid
AI Thread Summary
The discussion revolves around a physics problem involving three identical spheres in contact on a horizontal plane with a fourth sphere resting on them. Participants are trying to derive the minimum coefficient of friction required for equilibrium, specifically that it should be at least (rad(3)-rad(2)) for the spheres and (rad(3)-rad(2))/4 between the spheres and the plane. There is confusion regarding the necessity of friction between the spheres and how to calculate the forces acting on them. Participants are attempting to sum forces and derive equations related to the normal force and friction, but struggle with the geometry involved in determining the correct angles. The conversation highlights the complexity of the problem and the challenges in visualizing the forces in a three-dimensional setup.
Blade707
Messages
8
Reaction score
0
Three identical spheres lie in contact with one another on a horizontal plane. A fourth
sphere rests on them, touching all three. Show that, in equilibrium, the coefficient of
friction between the spheres is at least (rad(3)-rad(2)) and that the coefficient between each sphere and the plane is at least (rad(3)-rad(2))/4

The only thing I can think to use here is summing forces. But woah, I am so stuck. Do I have the right idea even? Any help would be appreciated it!

Thanks!
 
Physics news on Phys.org
Thats pretty intense!
I'm having trouble conceptualizing why there has to be any friction between the spheres... but i think i can help with the second part:
The weight of the top sphere is the only one disrupting equilibrium right? i.e. no top sphere, no motion (even without friction).
How much top sphere (TS) weight is on each bottom sphere (BS)?
How much is parallel to the plane they're resting on?
How much friction is required to balance that - keeping them all stationary?
 
Uh I'm having troubles grasping this. Ok so using what you said before about the second part, I summed forces on one ball.

(1) In the x: (mg/3)cos(theta)=N(cf) mg/3 is the weight of the top ball on the bottom sphere, N is the normal force at floor, and (cf) is my coefficient of friction.

(2) In the y: N=mgsin(theta)+mg

Putting (2) into (1):
(mg/3)cos(theta)=(cf)(mgsin(theta)+mg)
reduced:
cf=cos(theta)/(3sin(theta)+3)

Is this the right equation to work with? If I knew what angle to put in anyway!
 
Those look correct.
As for theta... that's just a little geometry.
The pyramid will be a tetrahedron, I'm sure you can look up or derive the angle somehow... I'm terrible with 3d geo.
 
Yeah I'm awful at it as well I found some angles online like 55 degrees and 71 degrees but neither of them get me to the correct answer given in the question. could it be because I need another force for the friction between the top ball and bottom ball? If so I just get more lost because in introduces a new cf
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top