Register to reply

Help with full rank factorization

by learningstill
Tags: factorization, rank
Share this thread:
learningstill
#1
Jul23-08, 04:28 PM
P: 3
I've been tasked with proving the existence of a full rank factorization for an arbitrary m x n matrix, namely:

Let [tex]\textit{A}[/tex] [tex]\in[/tex] [tex]\textbf{R}^{m x n}[/tex] with [tex]\textit{rank(A) = r}[/tex] then there exist matrices [tex]\textit{B}[/tex] [tex]\in[/tex] [tex]\textbf{R}^{m x r}[/tex] and [tex]\textit{C}[/tex] [tex]\in[/tex] [tex]\textbf{R}^{r x n}[/tex] such that [tex]\textit{A = BC}[/tex]. Furthermore [tex]\textit{rank(A) = rank(B) = r}[/tex].

I think I can prove the second property if I assume the first using [tex]\it{rank(AB)}[/tex] [tex]\leq[/tex] [tex]\it{rank(A)}[/tex] and [tex]\it{rank(AB)}[/tex] [tex]\leq[/tex] [tex]\it{rank(B)}[/tex].

I'd appreciate a push in the right direction. Thanks.


EDIT: I just realized I posted this in the wrong forum. Could a mod move this? My apologies.
Phys.Org News Partner Science news on Phys.org
Experts defend operational earthquake forecasting, counter critiques
EU urged to convert TV frequencies to mobile broadband
Sierra Nevada freshwater runoff could drop 26 percent by 2100

Register to reply

Related Discussions
Proving col rank = row rank Calculus & Beyond Homework 19
Proving Rank(A^T) = Rank (A) Linear & Abstract Algebra 3
QR Factorization Linear & Abstract Algebra 0
Which terms should be grouped together for factorization? Introductory Physics Homework 2
Rank 2 and rank 1 field theories Quantum Physics 4