Input-output model [easay but borring ]

  • Thread starter Thread starter oswald
  • Start date Start date
  • Tags Tags
    Model
oswald
Messages
22
Reaction score
0
1- Question and data
Find the production cost for wine, cloth and gold.
A
0,06 0,03 0,02
0,08 0,175 0,32
0,01 0,015 0,34

A0
0,006 0,005 0,01

K

2,2 0 0
1 0,5 0,26
0 0 0

De

0,2 0 0
0 0,1 0
0 0 0

D

10
10
0

d*a0
0,06 0,05 0,1
0,06 0,05 0,1
0 0 0

k*de
0,44 0 0
0,1 0,05 0,026
0 0 0

A+da0
0,12 0,08 0,12
0,14 0,225 0,42
0,01 0,015 0,34

A'=
0,56 0,08 0,12
0,24 0,275 0,446
0,01 0,015 0,34

.......wine cloth gold
Price..... ...8,44425 0,46119 1,00000
Cost... ...4,84947 0,81737 1,55900
Input..... 0,55355 0,34904 0,65647
working force... 0,53433 0,44527 0,89054
Depreciation... 3,76159 0,02306 0,01199
Profit..... 3,59479 -0,35618 -0,55900
Capital.....20,12642 1,02490 1,66692
Fixed...... 19,03854 0,23059 0,11991
Circulating ...1,08788 0,79431 1,54701
Profit %..... 17,86000 -34,75000 -33,53000

where;

A= input output coefficient
a0=working forcecoefficient
K=capital coefficient
<d>=depreciation coefficient
d= wage coefficient

2. Homework Equations

Cost = price * [A+da0+<de>k]

4,84947 0,81737 1,55900 = 8,44425 0,46119 1,00000 * A';
A'=
0,56 0,08 0,12
0,24 0,275 0,446
0,01 0,015 0,34

3. The Attempt at a Solution

I want to know how calculate the value of Input,working force... for each product with thoses matrices!
For exemple, capital for wine is 20,126, my teacher says we obtain by resolving:
Capital = p[pAj + p<d>Kj+pdaoj], but it didn't work..
 
Last edited:
Physics news on Phys.org
i understand, i remembered the mean i x j [ n,m i x j ]
x w c g
w
c
g
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top