Good books in Set theory and Mathematical Logic

AI Thread Summary
The discussion focuses on finding a book on mathematical logic that requires minimal prior knowledge of set theory, specifically targeting readers familiar with basic concepts like power sets and functions. It highlights that while Quine's work is foundational, it may be outdated compared to modern texts that integrate set theory more comprehensively. Recommendations include Graham Priest's "Logic: A Very Short Introduction" for a less formal approach, and more rigorous texts like Ebbinghaus, Flum, and Thomas's "Mathematical Logic" for a solid foundation. The user expresses intent to pursue graduate-level courses in mathematical logic, indicating a desire for resources that align with advanced study. Overall, the thread emphasizes the importance of selecting appropriate texts that bridge basic set theory and mathematical logic.
Bourbaki1123
Messages
326
Reaction score
0
I am more precisely looking for a book on mathematical logic which presupposes only minimal exposure to set theory. Preferably something which includes an introductory chapter delineating relevant set theoretic principals.

I am familiar with only basic set theory. More precisely this means that I understand the following concepts:Power sets, relations, functions, classes, union, intersection, ordered tuples. I know some group, ring and field theory.
 
Physics news on Phys.org
as far as i know, mathematical logic, such as espoused in the book of say W.v.O.Quine, does not presuppose any set theory at all.
 
I don't know if Quine's book is adequate. It seems that modern mathematical logic not only requires set theory, but is built entirely upon it. This is exemplified by an example from J.D.Monk's book on the subject (I picked it up in the small library in my uni's math building):A first order language is defined to be a quadruple 'L'(fancy cursive L)= (L,v,O,R) with the following properties:
(i)L,v,O and R are functions such that RngL, Rng v(range of v), Dmn(domain)O, and Dmn R are pairwise disjoint.
(ii)DmnL=5,and L is one-one, L0 is the negation symbol of 'L',L1 is the disjunctive symbol of 'L',L2 the conjunctive symbol and L4 the equality symbol. Ect...
 
Since it isn't stated what the OP wants to learn of logic here are two sorts of answers.

1) To learn some of the ideas of logic in a less formal manner perhaps consider Graham Priest's "Logic: A Very Short Introduction".

2) To learn mathematical logic, then reasonable set theory texts are Lawvere "Sets for Mathematics"; and Suppes "Axiomatic Set Theory". For mathematical logic the two texts that I have found most useful are Ebbinghaus, Flum and Thomas "Mathematical Logic" (a Springer undergraduate text). The other text is a bit more advanced, J. R. Schoenfield "Mathematical Logic" more on model theory and first-order theories, not so much proof theory. Even though Schoenfield was first published in 1967 it is still quite fresh. Quine on the other hand is a bit dated.
 
Thanks, I decided to pick up eddinghaus already. I already know all of the material in Quine's Methods of Logic and had assumed Quine's treatment would be a bit dated. I am hopefully going to take a grad level sequence mathematical logic courses my junior and senior years. I suspect that since there is not an undergraduate course offered at the school, it will be more like an undergrad course.
 
The book is fascinating. If your education includes a typical math degree curriculum, with Lebesgue integration, functional analysis, etc, it teaches QFT with only a passing acquaintance of ordinary QM you would get at HS. However, I would read Lenny Susskind's book on QM first. Purchased a copy straight away, but it will not arrive until the end of December; however, Scribd has a PDF I am now studying. The first part introduces distribution theory (and other related concepts), which...
I've gone through the Standard turbulence textbooks such as Pope's Turbulent Flows and Wilcox' Turbulent modelling for CFD which mostly Covers RANS and the closure models. I want to jump more into DNS but most of the work i've been able to come across is too "practical" and not much explanation of the theory behind it. I wonder if there is a book that takes a theoretical approach to Turbulence starting from the full Navier Stokes Equations and developing from there, instead of jumping from...
Back
Top