Energy storage density of coiled springs

AI Thread Summary
The discussion focuses on the energy storage density of coiled springs made from materials like steel, titanium, carbon fiber, and carbon nanotubes. The energy stored in a spring is determined by the formula 1/2*K*x^2, emphasizing the importance of large deflection and high yield strength. Titanium is highlighted for its high yield point, while carbon fiber is noted for its lightweight properties but limited deflection due to stiffness. Theoretical calculations for specific spring dimensions and materials are suggested, with a mention of leaf springs as a simpler alternative. Quartz is also mentioned as a viable material for springs due to its lack of hysteresis.
stanleykorn
Messages
2
Reaction score
0
I’m looking for an information source on the energy storage density of coiled springs made of various materials. Of particular interest are steel, titanium, carbon fiber, and carbon nanotubes.
 
Engineering news on Phys.org
stanleykorn said:
I’m looking for an information source on the energy storage density of coiled springs made of various materials. Of particular interest are steel, titanium, carbon fiber, and carbon nanotubes.

The stored energy in a spring is 1/2*K*x^2, so from an energy storage standpoint it would be best to have a spring that had a large deflection (high yield strength). This brings Titanium into the picture due to its very large yield point. It's possible carbon fiber would be pretty good from a weight ratio standpoint because it's so light, but it is also very stiff which means it wouldn't deflect very far before breaking (keep in mind the x^2 in the energy formula).

You'll basically have to do some calculation of a theoretical spring of certain dimensions made out of a specific material. You might consider analyzing a simpler spring like a leaf spring since a load will be taken in pue tension/compression in the beam, where as a coil spring tends to have a combination of bending and torsional sresses. It probably isn't useful to discuss a carbon nanotube spring, since they don't exist (and carbo nanotubes are best in tension, like carbon fiber).
 
Quartz can be made into some very good springs. the advantage over metals, no memory (or hysteresis) even over years of space travel.

dr
 
Thread 'How can I find the cleanout for my building drain?'
I am a long distance truck driver, but I recently completed a plumbing program with Stratford Career Institute. In the chapter of my textbook Repairing DWV Systems, the author says that if there is a clog in the building drain, one can clear out the clog by using a snake augur or maybe some other type of tool into the cleanout for the building drain. The author said that the cleanout for the building drain is usually near the stack. I live in a duplex townhouse. Just out of curiosity, I...
Hi all, I have a question. So from the derivation of the Isentropic process relationship PV^gamma = constant, there is a step dW = PdV, which can only be said for quasi-equilibrium (or reversible) processes. As such I believe PV^gamma = constant (and the family of equations) should not be applicable to just adiabatic processes? Ie, it should be applicable only for adiabatic + reversible = isentropic processes? However, I've seen couple of online notes/books, and...
Back
Top