Prove that the intersection of any collection of closed sets in a topological space Xby son Tags: collection, intersection, prove, sets, space, topological 

#1
Feb1811, 10:33 PM

P: 7

Prove that the intersection of any collection of closed sets in a
topological space X is closed. 1. The problem statement, all variables and given/known data 2. Relevant equations 3. The attempt at a solution 1. The problem statement, all variables and given/known data 2. Relevant equations 3. The attempt at a solution 



#2
Feb1811, 10:55 PM

Emeritus
Sci Advisor
HW Helper
PF Gold
P: 7,416

What have you tried?
Where are you stuck? How is a closed set defined? 



#3
Feb1811, 11:43 PM

HW Helper
P: 3,309

think about complements




#4
Feb1911, 08:59 AM

P: 3

Prove that the intersection of any collection of closed sets in a topological space X
I believe, the shortest and the easiest way is to start with the definition of a closed set and what an intersection is.
Good Luck. 



#5
Feb1911, 09:07 AM

Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 38,898

Indeed, the shortest and easiest way to prove anything is to start with the definitions!
However, there are many different ways to define "closed set". son, what definition are you using? 



#6
Feb1911, 11:47 AM

P: 7

the theorem i am using for a closed set is...
Let X be a topological space. the following statements about the collection of closed set in X hold: (i) the empty set and X are closed (ii) the intersection of any collection of closed sets is a closed set (iii) the union of finitely many closed sets is a closed set 



#7
Feb1911, 12:12 PM

P: 3

I am new in the forum ( although I have read it for some time ) and I am not quite sure how much of a hint I am allowed to give you but:
You can prove that a set is closed using "balls". I would suggest you to work in this direction. 



#8
Feb1911, 01:14 PM

Mentor
P: 16,698





#9
Feb1911, 01:31 PM

Sci Advisor
P: 905

This follows directly from the definition. Please show us what part you're having trouble with. This is not a homework answer generator.




#10
Feb1911, 03:23 PM

Emeritus
Sci Advisor
HW Helper
PF Gold
P: 7,416

A closed set is the complement of ___?___ .




#11
Feb2111, 11:47 AM

P: 7

the definition of a closed set is.... a subset A of a topological space X is closed if the set X  A is open.
but im not sure how i would start the proof... 



#12
Feb2111, 12:16 PM

P: 7

the definition of a closed set is.... a subset A of a topological space X is closed if the set X  A is open.
but im not sure how i would start the proof... 



#13
Feb2111, 01:42 PM

Sci Advisor
HW Helper
PF Gold
P: 2,929

What is the definition of a topological space? Doesn't it say something about the union of a collection of open sets?




#14
Feb2111, 05:28 PM

Emeritus
Sci Advisor
HW Helper
PF Gold
P: 7,416

[tex]\text{Let }\left\{A_\alpha\right\}\text{ be an arbitrary collection of closed sets in a topological space }X, \text{ where }\alpha\in I,\ I \text{ an indexing set.}[/tex] [tex]\text{The set }C=\bigcup_{\alpha\in I}\,A_\alpha\ \text{ is the union of an arbitrary collection of closed sets in }X.[/tex] ... Now show that the compliment of set C is open in X. 



#15
Feb2111, 11:12 PM

P: 7

Let F={F_i} be a collection of closed sets. Then F_i=XU_i for some collection {U_i} of open sets of X, because of the definition of closed. Then DeMorgans rules give
intersection F_i = intersection (XU_i) = X  (union U_i) But union U_i is an open set because the unions of open sets are open. Thus the set on the right hand side of the above equation is the complement of an open set. Hence the intersection F_i is closed. does this look RIGHT?? 



#16
Feb2111, 11:36 PM

Emeritus
Sci Advisor
HW Helper
PF Gold
P: 7,416

That's the general idea. It could be a bit more polished.




#17
Feb2211, 06:10 AM

Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 38,898





#18
Feb2211, 01:58 PM

Emeritus
Sci Advisor
PF Gold
P: 9,014

Suppose that [itex]\{F_ii\in I\}[/itex] is a collection of closed sets. You want to prove that
[tex]\bigcap_{i\in I}F_i[/tex] is closed. By the definition you posted, this is the same thing as showing that [tex]\Big(\bigcap_{i\in I}F_i\Big)^c[/tex] is open. Can you think of a way to rewrite this last expression as something that's obviously open? 


Register to reply 
Related Discussions  
Finite intersection of closed sets is not necessarily closed  Differential Geometry  2  
Countable Union/Intersection of Open/Closed sets  Calculus & Beyond Homework  8  
Connected sets in a topological space  Calculus  4  
Closed sets in a topological space  Set Theory, Logic, Probability, Statistics  7  
[SOLVED] Topological Properties of Closed Sets in the Complex Plane  Calculus & Beyond Homework  7 