BrianMath
- 26
- 0
Homework Statement
Theorem 1.4: Show that every Cauchy sequence is bounded.
Homework Equations
Theorem 1.2: If a_n is a convergent sequence, then a_n is bounded.
Theorem 1.3: a_n is a Cauchy sequence \iff a_n is a convergent sequence.
The Attempt at a Solution
By Theorem 1.3, a Cauchy sequence, a_n, is a convergent sequence. By Theorem 1.2, a converging sequence must be bounded. Therefore, every Cauchy sequence is bounded.
I was just flipping through the textbook that my Analysis class will be using, "Introduction to Analysis" by Edward D. Gaughan, reading through Chapter 1. I noticed this theorem was left to an exercise, but I thought it was a bit too obvious of an answer as these two theorems in the Relevant equations were proven just before it. Is this really as simple as that?