Finding the Time for Mass 1 to Hit the Floor in a Rotating Rigid Body System

AI Thread Summary
The discussion revolves around calculating the time it takes for mass 1 to hit the floor in a rotating rigid body system involving a pulley. The participants confirm an acceleration of approximately 1.65 m/s² for the system, leading to a calculated time of around 1.1 seconds for the mass to drop. Confusion arises regarding the height the mass descends, with clarification that it drops 1 meter, not 2 meters, due to the initial setup of the problem. Errors in applying kinematic equations and interpreting the problem are acknowledged, leading to a resolution of the calculations. Ultimately, the correct understanding and application of the equations yield consistent results among the contributors.
hyddro
Messages
73
Reaction score
2

Homework Statement


The two blocks in the figure are connected by a massless rope that passes over a pulley. The pulley is 14cm in diameter and has a mass of 2.4 kg. As the pulley turns, friction at the axle exerts a torque of magnitude 0.54 Nm .

12.P70.jpg


Homework Equations


so m1 = 4.0kg
m2= 2.0 kg
M = 2.4kg
r= 0.07m
Tf (torque due to friction) = 0.54 Nm
ƩFy (for mass 1)= T2 - m1*g
m1*ay1 +m1*g= T2 so T2 = m1(ay1+g) this becomes T2= m1(ay + g)

ƩFy (for mass 2)= T1 - m2*g
m1*ay2 + m2*g = T1 so T1 = m2(ay2 + g)
but since ay1 = -ay2 = ay this becomes T1 = m2(g - ay)

Ʃτ= T2*R - T1*R - Tf

The Attempt at a Solution



Using what i put up there i get the following formula

τnet = R(T2 - T1) - Tf = R(m1(ay+g) - m2(g-ay)) - Tf ... equation 1
since τ= Iα, I= 1/2 MR^2 and since α= -ay/R

equation 1 becomes..

1/2MR^2 * (-ay)R = R(m1(ay+g) - m2(g-ay)) - Tf ... solving for ay with the given data i found ay=-1.65 and thus using the kinematic equation i found Δt= 1.55s but this is wrong.. :( i would appreciate if anyone points out my error or mistake, thanks
EDIT: sorry about this, they are asking us to find the time it takes for mass 1 to hit the floor, starting at rest.
 
Last edited:
Physics news on Phys.org
Well, you never said what the actual question is. Looks like you are to figure out how long it takes the 4 kg mass to hit the floor? And everything is initially at rest?

I agree with the 1.65 m/s2 acceleration, so your mistake is probably in applying the kinematic equations. Can you show that work?

p.s. It's kind of confusing that you chose T2 for the rope holding m1, and T1 for the rope holding m2. Nonetheless you did find the correct acceleration.
 
thanks! and sorry about that! Yes it is kinda confusing but I am happy to know that someone else got the same acceleration. Well, I tried applying the kinematic formula:

yf = yi + Vi*t + 1/2 a t^2 ... t = delta t... and i chose the initial point to be 0, so the final point would be -2m since it goes down... also, the initial velocity is zero since it starts from rest... so..

-2.0m = 0 + 0 * t + 1/2 * (-1.65m/s^2) * t^2
thus...

-2.0 m / -1.65 m/s^2 = t^2... applying square root i get 1.1s...which seems to be the right answer... what the hell was i doing wrong?? oh wow i think i was not dividing properly... lol so all this time i actually had the right answer before my eyes but never realized that i was making a silly mistake... my mistake was applying the kinematic formula.. well thanks for your help have a nice day :)
 
[STRIKE]I get an acceleration of around 3.7 m/s and around 0.7 s.[/STRIKE] The only thing I can spot is that you multiply with R on the left-hand side of you last equation in your first post instead of dividing, but that just looks like a typo.

Edit: Just for the record, I made a sign error. Doing it properly I too get 1.7 m/s2 and 1.1 s.
 
Last edited:
I get 1.1 s as well. :smile: Be careful, it actually drops 1.0 m in 1.1 s, not 2.0 m.
 
wait, how come it only drops 1 meter? i thought it was going to hit the ground? are you saying that it doesn't actually hit the floor?... how come i got the same answer then? sorry but that made me confused...

EDIT! OH OH! sorry i got 2m because i multiplied both sides of the last equation by 2 so i get rid of the 1/2 on the right side of the equation. ofc its going to drop 1m cause that's the height of the mass1, i think i was looking at a different problem... lol thanks! you guys rock!
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...

Similar threads

Back
Top