DivGradCurl
- 364
- 0
Problem
f(x) = \frac{x}{1-x-x^2} = \sum _{n=1} ^{\infty} f_n x^n
By writing f(x) as a sum of partial fractions, find an explicit formula for the nth Fibonacci number.
My work
\frac{x}{1-x-x^2} = \frac{-4}{(2x + \sqrt{5} + 1)(2x - \sqrt{5} + 1)} = \frac{A}{2x + \sqrt{5} + 1} + \frac{B}{2x - \sqrt{5} + 1}
Heaviside's method gives:
\left. \frac{-4}{2x - \sqrt{5} + 1} = A + \frac{B(2x + \sqrt{5} + 1)}{2x - \sqrt{5} + 1} \right] _{x= -\frac{(\sqrt{5}+1)}{2}} \Longrightarrow A = \frac{2}{\sqrt{5}}
\left. \frac{-4}{2x + \sqrt{5} + 1} = \frac{A(2x - \sqrt{5} + 1)}{2x + \sqrt{5} + 1} + B \right] _{x= \frac{\sqrt{5}-1}{2}} \Longrightarrow B = -\frac{2}{\sqrt{5}}
Thus,
f(x) = \frac{2}{\sqrt{5}} \left( \frac{1}{2x + \sqrt{5} + 1} - \frac{1}{2x - \sqrt{5} + 1} \right)
Then
(2x - \sqrt{5} + 1)^{-1} = \frac{1}{1-\sqrt{5}}\left( 1 + \frac{2x}{1-\sqrt{5}} \right) ^{-1} = \frac{1}{1-\sqrt{5}} \sum _{n=0} ^{\infty} \binom{-1}{n} \left( \frac{2x}{1-\sqrt{5}} \right) ^n = \sum _{n=0} ^{\infty} \frac{(-1)^n 2^n}{\left( 1-\sqrt{5}} \right) ^{n+1}}x^n
(2x + \sqrt{5} + 1)^{-1} = \frac{1}{\sqrt{5}+1}\left( 1 + \frac{2x}{\sqrt{5}+1} \right) ^{-1} = \frac{1}{\sqrt{5}+1} \sum _{n=0} ^{\infty} \binom{-1}{n} \left( \frac{2x}{\sqrt{5}+1} \right) ^n = \sum _{n=0} ^{\infty} \frac{(-1)^n 2^n}{\left( \sqrt{5}+1} \right) ^{n+1}}x^n
f(x) = \frac{2}{\sqrt{5}} \left\{ \sum _{n=0} ^{\infty} \left[ \frac{(-1)^n 2^n}{\left( \sqrt{5}+1} \right) ^{n+1}}x^n \right] - \sum _{n=0} ^{\infty} \left[ \frac{(-1)^n 2^n}{\left( 1-\sqrt{5}} \right) ^{n+1}}x^n \right] \right\}
What else can I do?
Thanks
f(x) = \frac{x}{1-x-x^2} = \sum _{n=1} ^{\infty} f_n x^n
By writing f(x) as a sum of partial fractions, find an explicit formula for the nth Fibonacci number.
My work
\frac{x}{1-x-x^2} = \frac{-4}{(2x + \sqrt{5} + 1)(2x - \sqrt{5} + 1)} = \frac{A}{2x + \sqrt{5} + 1} + \frac{B}{2x - \sqrt{5} + 1}
Heaviside's method gives:
\left. \frac{-4}{2x - \sqrt{5} + 1} = A + \frac{B(2x + \sqrt{5} + 1)}{2x - \sqrt{5} + 1} \right] _{x= -\frac{(\sqrt{5}+1)}{2}} \Longrightarrow A = \frac{2}{\sqrt{5}}
\left. \frac{-4}{2x + \sqrt{5} + 1} = \frac{A(2x - \sqrt{5} + 1)}{2x + \sqrt{5} + 1} + B \right] _{x= \frac{\sqrt{5}-1}{2}} \Longrightarrow B = -\frac{2}{\sqrt{5}}
Thus,
f(x) = \frac{2}{\sqrt{5}} \left( \frac{1}{2x + \sqrt{5} + 1} - \frac{1}{2x - \sqrt{5} + 1} \right)
Then
(2x - \sqrt{5} + 1)^{-1} = \frac{1}{1-\sqrt{5}}\left( 1 + \frac{2x}{1-\sqrt{5}} \right) ^{-1} = \frac{1}{1-\sqrt{5}} \sum _{n=0} ^{\infty} \binom{-1}{n} \left( \frac{2x}{1-\sqrt{5}} \right) ^n = \sum _{n=0} ^{\infty} \frac{(-1)^n 2^n}{\left( 1-\sqrt{5}} \right) ^{n+1}}x^n
(2x + \sqrt{5} + 1)^{-1} = \frac{1}{\sqrt{5}+1}\left( 1 + \frac{2x}{\sqrt{5}+1} \right) ^{-1} = \frac{1}{\sqrt{5}+1} \sum _{n=0} ^{\infty} \binom{-1}{n} \left( \frac{2x}{\sqrt{5}+1} \right) ^n = \sum _{n=0} ^{\infty} \frac{(-1)^n 2^n}{\left( \sqrt{5}+1} \right) ^{n+1}}x^n
f(x) = \frac{2}{\sqrt{5}} \left\{ \sum _{n=0} ^{\infty} \left[ \frac{(-1)^n 2^n}{\left( \sqrt{5}+1} \right) ^{n+1}}x^n \right] - \sum _{n=0} ^{\infty} \left[ \frac{(-1)^n 2^n}{\left( 1-\sqrt{5}} \right) ^{n+1}}x^n \right] \right\}
What else can I do?
Thanks
Last edited: