Query on indexing to determine coefficients

  • Thread starter Thread starter bugatti79
  • Start date Start date
  • Tags Tags
    Coefficients
AI Thread Summary
The discussion centers on the validity of the expression for calculating coefficients in the equation B_ij, particularly when i=1 and j=1. Participants note that the author claims the expression is invalid for these values, yet calculations yield specific results for B_11 and B_1j. Confusion arises over the indeterminate forms encountered in the equation, especially regarding the second term in the brackets, which results in 0/0 when i=j=1. There is also mention of potential editing issues in the expression that could affect clarity. The conversation seeks clarification on how these mathematical nuances impact the overall validity of the calculations.
bugatti79
Messages
786
Reaction score
4
Folks,
I am interested to know what the author is doing in the following

##\displaystyle B_{ij}=EL ij (L)^{(i+j-1)} \left[ \frac{(i-1)(j-1)}{i+j-3} -\frac{2(ij-1)}{i+j-2}+\frac{(i+1)(j+1)}{i+j-1}\right]##

he states that this expression is not valid for ##B_{ij}## when ##i=1## and ##j=1,2,...N##

...yet he goes on to actually calculate

##B_{11}=4EIL##, ##B_{1j}=B_{j1}=2EIL^j##, ##(j>1)##

I understand the the numerator in the first 2 terms inside the big brakets are both 0 when i=j=1 but we still yield a value from the third term...
Any insight will be appreciated
Regards

PS:I notice there is some editing problem with the 3 terms inside the big brackets. There should be a minus and plus separating the terms.
 
Mathematics news on Phys.org
bugatti79 said:
Folks,
I am interested to know what the author is doing in the following

##\displaystyle B_{ij}=EL ij (L)^{(i+j-1)} \left[ \frac{(i-1)(j-1)}{i+j-3} -\frac{2(ij-1)}{i+j-2}+\frac{(i+1)(j+1)}{i+j-1}\right]##

he states that this expression is not valid for ##B_{ij}## when ##i=1## and ##j=1,2,...N##
That's not at all obvious. The only restrictions I see are that
1. i + j ≠ 3 (would make the first denominator vanish)
2. i + j ≠ 2 (would make the second denominator vanish)
3. i + j ≠ 1 (would make the third denominator vanish)
bugatti79 said:
...yet he goes on to actually calculate

##B_{11}=4EIL##, ##B_{1j}=B_{j1}=2EIL^j##, ##(j>1)##
I don't see how. With i = 1, j = 1, the second term in the brackets is 0/0.
bugatti79 said:
I understand the the numerator in the first 2 terms inside the big brakets are both 0 when i=j=1 but we still yield a value from the third term...
Any insight will be appreciated
Regards

PS:I notice there is some editing problem with the 3 terms inside the big brackets. There should be a minus and plus separating the terms.
 
Could you give a link to where you found this question?
 
Mark44 said:
I don't see how. With i = 1, j = 1, the second term in the brackets is 0/0.

Are you saying because one of the terms is indeterminate then the whole equation is invalid and thus cannot be usedt o calcualte ##B_{ij}## for i=j=1?

micromass said:
Could you give a link to where you found this question?

See attached jpeg of question. The answer involves converting the DE into a weak form using a weight function w and splitting the differentiation between the weight function and the dependent variable u.
Would the choice of the approximation functions affect the outcome?

regards
 

Attachments

  • Question.jpg
    Question.jpg
    16.9 KB · Views: 339
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top