Operator acting on the function

  • Thread starter Thread starter VolBog
  • Start date Start date
  • Tags Tags
    Function Operator
VolBog
Messages
4
Reaction score
0

Homework Statement


Calculate the action of the operator on the function f(x)



Homework Equations


Operator - exp(a*x^2*(d/dx))


The Attempt at a Solution


2013_03_02_20_47_40.jpg
 
Physics news on Phys.org
I don't really see what you need the commutator expansion for, to be honest.
Why don't you just expand the exponential in a power series?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top