Exclusion-inclusion formula in probability

mahler1
Messages
217
Reaction score
0

Homework Statement



Let ##(\Omega,\mathcal F, P)## be a probability space and let ##A_1,A_2,...,A_n## be events in ##\mathcal F##.

Prove the following inclusion-exclusion formula

##P(\bigcup_{i=1}^nA_i)=\sum_{k=1}^n## ##\sum_{\mathcal J \subset \{1,...,n\}; |\mathcal J|=k} (-1)^{k+1}P(\bigcap_{i \in \mathcal J} A_i)##


The Attempt at a Solution



I am trying to prove this formula by induction; for ##n=2##, let ##A, B## be two events in ##\mathcal F##. We can write ##A=(A \setminus B) \cup (A\cap B)##, ##B=(B \setminus A) \cup (A\cap B)##, since these are disjoint unions, then

##P(A)=P(A \setminus B)+P(A\cap B)## and ##P(B)=P(B \setminus A)+P(A\cap B)##.

Now, ##A \cup B## can be expressed as ##A \cup B= (A\setminus B) \cup (A \cap B) \cup (B \setminus A)##, which it's also union of disjoint sets, so

##P(A \cup B)=P(A \setminus B)+P(A\cap B)+P(B \setminus A)=P(A)+P(B)-P(A \cap B)##.

This proves that for ##n=2##, the formula is correct.

Now, I want to show that the formula is true for ##n \implies## the formula is satisfied for ##n+1##

I define ##B_1=A_1,\ldots,B_{n-1}=A_{n-1},B_n=A_n\cup A_{n+1}##. We have

##P(\cup_{i=1}^n B_i)=\sum_{\mathcal J \subset \{1,...,n\}; |\mathcal J|=k} (-1)^{k+1}P(\bigcap_{i \in \mathcal J} B_i)##.

This equals to ##\sum_{\mathcal J \subset \{1,...,n-1\}; |\mathcal J|=k} (-1)^{k+1}P(\bigcap_{i \in \mathcal J} A_i)+\sum_{\mathcal J \subset \{1,...,n-1\}; |\mathcal J|=k-1} (-1)^{k}P(\bigcap_{i \in \mathcal J} A_i \cap (A_n \cup A_{n+1}))##

##=\sum_{\mathcal J \subset \{1,...,n-1\}; |\mathcal J|=k} (-1)^{k+1}P(\bigcap_{i \in \mathcal J} A_i)+\sum_{\mathcal J \subset \{1,...,n-1\}; |\mathcal J|=k-1} (-1)^k(P(\bigcap_{i \in \mathcal J} A_i \cap A_n)+ P(\bigcap_{i \in \mathcal J} A_i \cap A_{n+1})-P(\bigcap_{i \in \mathcal J} A_i \cap A_n \cap A_{n+1}))##.

I don't know how to reduce this expression to the one I need to, which is:

##\sum_{\mathcal J \subset \{1,...,n+1\}; |\mathcal J|=k} (-1)^{k+1}P(\bigcap_{i \in \mathcal J} A_i)##


I would really appreciate some help to finish the problem.
 
Physics news on Phys.org
mahler1 said:

Homework Statement



Let ##(\Omega,\mathcal F, P)## be a probability space and let ##A_1,A_2,...,A_n## be events in ##\mathcal F##.

Prove the following inclusion-exclusion formula

##P(\bigcup_{i=1}^nA_i)=\sum_{k=1}^n## ##\sum_{\mathcal J \subset \{1,...,n\}; |\mathcal J|=k} (-1)^{k+1}P(\bigcap_{i \in \mathcal J} A_i)##


The Attempt at a Solution



I am trying to prove this formula by induction; for ##n=2##, let ##A, B## be two events in ##\mathcal F##. We can write ##A=(A \setminus B) \cup (A\cap B)##, ##B=(B \setminus A) \cup (A\cap B)##, since these are disjoint unions, then

##P(A)=P(A \setminus B)+P(A\cap B)## and ##P(B)=P(B \setminus A)+P(A\cap B)##.

Now, ##A \cup B## can be expressed as ##A \cup B= (A\setminus B) \cup (A \cap B) \cup (B \setminus A)##, which it's also union of disjoint sets, so

##P(A \cup B)=P(A \setminus B)+P(A\cap B)+P(B \setminus A)=P(A)+P(B)-P(A \cap B)##.

This proves that for ##n=2##, the formula is correct.

Now, I want to show that the formula is true for ##n \implies## the formula is satisfied for ##n+1##

I define ##B_1=A_1,\ldots,B_{n-1}=A_{n-1},B_n=A_n\cup A_{n+1}##. We have

##P(\cup_{i=1}^n B_i)=\sum_{\mathcal J \subset \{1,...,n\}; |\mathcal J|=k} (-1)^{k+1}P(\bigcap_{i \in \mathcal J} B_i)##.

This equals to ##\sum_{\mathcal J \subset \{1,...,n-1\}; |\mathcal J|=k} (-1)^{k+1}P(\bigcap_{i \in \mathcal J} A_i)+\sum_{\mathcal J \subset \{1,...,n-1\}; |\mathcal J|=k-1} (-1)^{k}P(\bigcap_{i \in \mathcal J} A_i \cap (A_n \cup A_{n+1}))##

##=\sum_{\mathcal J \subset \{1,...,n-1\}; |\mathcal J|=k} (-1)^{k+1}P(\bigcap_{i \in \mathcal J} A_i)+\sum_{\mathcal J \subset \{1,...,n-1\}; |\mathcal J|=k-1} (-1)^k(P(\bigcap_{i \in \mathcal J} A_i \cap A_n)+ P(\bigcap_{i \in \mathcal J} A_i \cap A_{n+1})-P(\bigcap_{i \in \mathcal J} A_i \cap A_n \cap A_{n+1}))##.

I don't know how to reduce this expression to the one I need to, which is:

##\sum_{\mathcal J \subset \{1,...,n+1\}; |\mathcal J|=k} (-1)^{k+1}P(\bigcap_{i \in \mathcal J} A_i)##


I would really appreciate some help to finish the problem.

Instead of trying to jump immediately to the general case, first try the simple cases of going from n=2 to n=3 and from n=3 to n=4 (and no, I am not joking). That way, you will see what is happening, and be able to grasp how to go the the general case of n to (n+1).
 
  • Like
Likes 1 person
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top