What is Lagrangians: Definition and 58 Discussions

Introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in 1788, Lagrangian mechanics is a formulation of classical mechanics and is founded on the stationary action principle.
Lagrangian mechanics defines a mechanical system to be a pair



(
M
,
L
)


{\displaystyle (M,L)}
of a configuration space



M


{\displaystyle M}
and a smooth function



L
=
L
(
q
,
v
,
t
)


{\displaystyle L=L(q,v,t)}
called Lagrangian. By convention,



L
=
T

V
,


{\displaystyle L=T-V,}
where



T


{\displaystyle T}
and



V


{\displaystyle V}
are the kinetic and potential energy of the system, respectively. Here



q

M
,


{\displaystyle q\in M,}
and



v


{\displaystyle v}
is the velocity vector at



q


{\displaystyle q}




(
v


{\displaystyle (v}
is tangential to



M
)
.


{\displaystyle M).}
(For those familiar with tangent bundles,



L
:
T
M
×


R


t




R

,


{\displaystyle L:TM\times \mathbb {R} _{t}\to \mathbb {R} ,}
and



v


T

q


M
)
.


{\displaystyle v\in T_{q}M).}

Given the time instants




t

1




{\displaystyle t_{1}}
and




t

2


,


{\displaystyle t_{2},}
Lagrangian mechanics postulates that a smooth path




x

0


:
[

t

1


,

t

2


]

M


{\displaystyle x_{0}:[t_{1},t_{2}]\to M}
describes the time evolution of the given system if and only if




x

0




{\displaystyle x_{0}}
is a stationary point of the action functional






S


[
x
]





=


def









t

1





t

2




L
(
x
(
t
)
,



x
˙



(
t
)
,
t
)

d
t
.


{\displaystyle {\cal {S}}[x]\,{\stackrel {\text{def}}{=}}\,\int _{t_{1}}^{t_{2}}L(x(t),{\dot {x}}(t),t)\,dt.}
If



M


{\displaystyle M}
is an open subset of





R


n




{\displaystyle \mathbb {R} ^{n}}
and




t

1


,


{\displaystyle t_{1},}





t

2




{\displaystyle t_{2}}
are finite, then the smooth path




x

0




{\displaystyle x_{0}}
is a stationary point of





S




{\displaystyle {\cal {S}}}
if all its directional derivatives at




x

0




{\displaystyle x_{0}}
vanish, i.e., for every smooth



δ
:
[

t

1


,

t

2


]



R


n


,


{\displaystyle \delta :[t_{1},t_{2}]\to \mathbb {R} ^{n},}





δ


S







=


def







d

d
ε






|



ε
=
0




S



[


x

0


+
ε
δ

]

=
0.


{\displaystyle \delta {\cal {S}}\ {\stackrel {\text{def}}{=}}\ {\frac {d}{d\varepsilon }}{\Biggl |}_{\varepsilon =0}{\cal {S}}\left[x_{0}+\varepsilon \delta \right]=0.}
The function



δ
(
t
)


{\displaystyle \delta (t)}
on the right-hand side is called perturbation or virtual displacement. The directional derivative



δ


S




{\displaystyle \delta {\cal {S}}}
on the left is known as variation in physics and Gateaux derivative in Mathematics.
Lagrangian mechanics has been extended to allow for non-conservative forces.

View More On Wikipedia.org
  1. V

    What Are the Correct Equations of Motion for a Magnetic Lagrangian?

    Sorry about the endless stream of questions about Lagrangians. I am actually beginning to detest them a bit;p Anyway, if we have a Lagrangian in three dimensional space: L=\frac{1}{2}m\dot{\vec{x}}^{2}+e\vec{A}.\dot{\vec{x}} where A_{i}=\epsilon_{ijk}B_{j}x_{k} and B is just a constant...
  2. H

    What Are the Steps to Calculate Perturbed Lagrangians in Vector Potential?

    I hope this is the right area to ask this, but does anyone know of a good link which describes perturbation theory? Or even a good book? I have a lagrangian that is a function of the vector potential and I need to figure out the perturbed lagrangian by perturbing the vector potential. That...
  3. C

    Kinetic Energy Calculation for Rigid Body Lagrangians with Two Particles

    Homework Statement two particles, m_{1}, and m_{2} are connected together by a thin masses rod of length d. The system moves under a uniform potential function U(r_{1}^{\rightarrow}, r_{2}^{\rightarrow}). What is the Kinetic energy of the system in cartesian coordinates? Homework Equations...
  4. L

    Lagrangians in Quantum Mechanics

    In classical mechanics the Lagrangian depends only on time, position, and velocity. It is not allowed to depend on any higher order derivatives of position. Does this principle remain true for Lagrangians in non-relativistic quantum mechanics? What about relativistic quantum field theory...
  5. C

    Are lagrangians based on physical observation or mathematics?

    are lagrangians based on physical observation or mathematical reasoning?
  6. M

    Lagrangians and P-Conservation

    I have a problem with a particle experiencing a central force towards some origin, as well as a gravitational force downwards. I've calculated the Lagrangian, and the equations of motion. Now I'm being asked to see if the system follows conservation of angular momentum. How do I do this? I...
  7. E

    Quantum mnechanics with lagrangians?

    usually quantum mechanics is made with hamiltonians but..could it be done with lagrangians in the sense that LF=gF where F is the wave function and g plays a role of an eigenvalue what would happen with dq/dtF?..in fact would it be equal to qEnF where En is the energy.. this can be...
  8. E

    Quantization without Lagrangians.

    In fact let us suppose we only have the classical equations of movement x´=f(x1,x2,x3...xn) but we do not have or not know a lagrangian ..how could we quantizy them?..in fact how is a quantization made if we do not have a lagrangian (or hamiltonian)?..
Back
Top